Abstract
We present a novel method for creating implicit surfaces from polygonal models. The implicit function is defined by convolving a kernel with the triangles in the polygonal model. By adopting a piecewise quartic polynomial kernel function with a finite support, we derive a convolution model that has a closed-form solution, and thus can be efficiently evaluated. The user only needs to specify an effective radius of influence to generate an implicit surface of desired closeness to the polygonal model. The resulting implicit surface is fast to evaluate, not requiring accumulating evaluation results using any hierarchical data structure, and can be efficiently ray-traced to reveal the detailed features.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blinn, J.F.: A Generalization of algebraic surface drawing. ACM Trans. Graph. 1(3), 235–256 (1982)
Bloomenthal, J., Shoemake, K.: Convolution Surfaces. In: Proceedings of SIGGRAPH ’91, pp. 251–256. ACM, New York (1991)
Bloomenthal, J., Bajaj, C., Blinn, J., Cani, M., Rockwood, A., Wyvilland, B.G.: An Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, Los Altos, CA (1997)
Bloomenthal, J.: Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4), 341–355 (1988)
Bloomenthal, J.: Bulge elimination in convolution surfaces. Comput. Graph. Forum 16(1), 31–41 (1997)
Cani, M.P., Desbrun, M.: Animation of deformable models using implicit surfaces. IEEE Trans. Vis. Comput. Graph. 3(1), 39–50 (1997)
Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH ’01, pp. 67–76. ACM, New York (2001)
Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of SIGGRAPH ’00, pp. 19–28. ACM, New York (2000)
Hornus, S., Angelidis, A., Cani, M.P.: Implicit modeling using subdivision curves. Visual Comput. 19(2–3), 94–104 (2003)
Jin, X., Tai, C.L.: Convolution surfaces for arcs and quadratic curves with a varying kernel. Visual Comput. 18(8), 530–546 (2002)
Kalra, D., Barr, A.H.: Guaranteed ray intersections with implicit surfaces. In: Proceedings of SIGGRAPH ’89, pp. 297–306. ACM, New York, NY (1989)
Kanai, T., Ohtake, Y., Kase, K.: Hierarchical error-driven approximation of implicit surfaces from polygonal meshes. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 21-30. Eurographics Association, Aire-la-Ville (2006)
McCormack, J., Sherstyuk, A.: Creating and rendering convolution surfaces. Comput. Graph. Forum 17(2), 113–120 (1998)
Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set surface editing operators. ACM Trans. Graph. 21(3), 330–338 (2002)
Nishimura, H., Hirai, M., Kawai, T.: Object modeling by distribution function and a method of image generation. Image Generation Trans. IECE 68(4), 718–725 (1985)
Nishita, T., Nakamae, E.: A method for displaying metaballs by using Bézier clipping. Comput. Graph. Forum 13(3), 271–280 (1994)
Oeltze, S., Preim, B.: Visualization of vasculature with convolution surfaces: method, validation and evaluation. IEEE Trans. Med. Imaging 24(4), 540–548 (2005)
Ohtake, Y., Belyaev, A., Seidel, H.P.: A multiscale approach to 3D scattered data interpolation with compactly supported basis functions. In: Proceedings of Shape Modeling International, pp. 292–300. IEEE Computer Society, Washington, DC (2003)
Sederberg, T.W., Zundel, A.K.: Scan line display of algebraic surfaces. In: Proceedings of SIGGRAPH ’89, pp. 145–156. ACM, New York, NY (1989)
Shen, C., O’Brien, J.F., Shewchuk, J.R.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23(3), 896–904 (2004)
Sherstyuk, A.: Kernel functions in convolution surfaces: a comparative analysis. Visual Comput. 15(4), 171–182 (1999)
Turk, G., O’Brien, J.F.: Modeling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)
Wyvill, B., Wyvill, G.: Field functions for implicit surfaces. Visual Comput. 5(1–2), 75–82 (1989)
Wyvill, G., McPheeters, C., Wyvill, B.: Data structure for oft objects. Visual Comput. 2(4), 227–234 (1986)
Yngve, G., Turk, G.: Robust creation of implicit surfaces from polygonal meshes. IEEE Trans. Vis. Comput. Graph. 21(4), 346–355 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, X., Tai, CL. & Zhang, H. Implicit modeling from polygon soup using convolution. Vis Comput 25, 279–288 (2009). https://doi.org/10.1007/s00371-008-0267-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-008-0267-3