Skip to main content
Log in

Moving objects forecast in image sequences using autoregressive algorithms

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The objective of this paper is to present an overall approach to forecasting the future position of the moving objects of an image sequence after processing the images previous to it. The proposed method makes use of classical techniques such as optical flow to extract objects’ trajectories and velocities, and autoregressive algorithms to build the predictive model. Our method can be used in a variety of applications, where videos with stationary cameras are used, moving objects are not deformed and change their position with time. One of these applications is traffic control, which is used in this paper as a case study with different meteorological conditions to compare with.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauchemin, S., Barron, J.: The computation of optical flow. ACM Comput. Surv. 27(3), 433–467 (1996)

    Article  Google Scholar 

  2. Bergeron, C., Dubois, E.: Gradient-based algorithms for block-oriented map estimation of motion and application to motion-compensated temporal interpolation. IEEE Trans. Circuits Syst. Video Technol. 1, 72–85 (1991)

    Article  Google Scholar 

  3. Bors, A., Pitas, I.: Prediction and tracking of moving objects in image sequences. In: IEEE Trans. Image Processing, vol. 8, pp. 1441–1445 (2000). http://citeseer.ist.psu.edu/article/bors00prediction.html

  4. Bouguet, J.Y.: Pyramidal implementation of the Lucas–Kanade feature tracker (2001). http://sourceforge.net/projects/opencvlibrary

  5. Box, G.E.P., Jenkins, F.M.: Time Series Analysis: Forecasting and Control. Holden-Day, Oakland (1976)

    MATH  Google Scholar 

  6. Carpenter, J., Clifford, P., Fearnhead, P.: Improved particle filter for non-linear problems. IEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999)

    Article  Google Scholar 

  7. Crespo, J.L., Zorrilla, M., Bernardos, P., Mora, E.: A new image prediction model based on spatio-temporal techniques. Vis. Comput. 23, 419–431 (2007). doi:10.1007/s00371-007-0114-y

    Article  Google Scholar 

  8. Cucchiara, R., Piccardi, M., Prati, A.: Detecting moving objects, ghosts and shadows in video stream. In: IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, pp. 1337–1342 (2003)

  9. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Information Science and Statistics. Springer, New York (2001)

    MATH  Google Scholar 

  10. EC funded Caviar project/IST 2001 37540. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

  11. Elnagar, A., Gupta, K.: Motion prediction of moving objects based on autoregressive model. IEEE Trans. Syst. MAN, Cybern.—Part A: Syst. Hum. 28(6), 803–810 (1998)

    Article  Google Scholar 

  12. Erkelens, J.: Autoregressive modelling for speech coding: Estimation, interpolation and quantisation. Ph.D. thesis, Delft University of Technology (1996)

  13. Gloyer, B., Aghajan, H.K., Siu, K.Y.S., Kailath, T.: Video-based freeway-monitoring system using recursive vehicle tracking. In: R.L. Stevenson, S.A. Rajala (eds.) Proc. SPIE, Image and Video Processing III, vol. 2421, pp. 173–180 (1995)

  14. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: A novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEE Proc. F 140(1), 107–113 (1993)

    Google Scholar 

  15. Group Prof. Dr. H.-H. Nagel Institut fuer Algorithmen und Kognitive Systeme, F. f.I.U.K.T.: Traffic intersection sequence. http://i21www.ira.uka.de/imagesequences/

  16. Horn, B., Schunk, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  17. Hsiao, Y.T., Chuang, C.L., Lu, Y.L., Jiang, J.A.: Robust multiple objects tracking using image segmentation and trajectory estimation scheme in video frames. Image Vis. Comput. 24, 1123–1136 (2006)

    Article  Google Scholar 

  18. Kehtarnavaz, N., Griswold, N.: Establishing collision zones for obstacles moving with uncertainty. Comput. Vis. Graph. Image Process. 49(1), 95–103 (1990)

    Article  Google Scholar 

  19. Labit, C., Nicolas, H.: Compact motion representation based on global features for semantic image sequence coding. In: K.H. Tzou, T. Koga (eds.) Proceedings of SPIE, Visual Communications and Image Processing, vol. 1605, pp. 697–708 (1991)

  20. Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: Proceedings of the International Symposium on Intelligent Multimedia, Video and Speech Processing, vol. 1, pp. 158–161 (2001)

  21. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of DARPA Image Understanding Workshop, IJCAI, pp. 674–679 (1981). http://citeseer.ist.psu.edu/lucas81iterative.html

  22. Mitiche, L., Adamou-Mitiche, A.B.H., Berkani, D.: Low-order model for speech signals. Signal Process. 84(10), 1805–1811 (2004)

    Article  MATH  Google Scholar 

  23. Pece, A., Worrall, A.: A comparison between feature-based and em-based contour tracking. Image Vis. Comput. 24(11), 1218–1232 (2006)

    Article  Google Scholar 

  24. Pfeifer, P.E., Deutsch, S.J.: A three-stage iterative procedure for space-time modeling. In: Technometrics, vol. 22(1), pp. 35–47 (1980)

  25. Piccardi, M.: Background subtraction techniques: a review. In: Proc. of IEEE SMC 2004 International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands., vol. 1, pp. 3099–3104 (2004)

  26. Rao, T.S., Antunes, A.M.C.: Spatio-temporal modelling of temperature time series: A comparative study. Time Ser. Anal. Appl. Geophys. Syst. 1, 123–150 (2004)

    Google Scholar 

  27. Smith, S.M.: Reviews of optic flow, motion segmentation, edge finding and corner finding. Technical Report TR97SMS1 (1997)

  28. Turkmen, I., Guney, K., Karaboga, D.: Genetic tracker with neural network for single and multiple target tracking. Neurocomputing 69(16–18), 2309–2319 (2006)

    Article  Google Scholar 

  29. Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley, Reading (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Zorrilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo, J.L., Zorrilla, M., Bernardos, P. et al. Moving objects forecast in image sequences using autoregressive algorithms. Vis Comput 25, 309–323 (2009). https://doi.org/10.1007/s00371-008-0270-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0270-8

Keywords

Navigation