Abstract
This paper discusses the problem of modeling on triangulated surfaces with geodesic curves. In the first part of the paper we define a new class of curves, called geodesic Bézier curves, that are suitable for modeling on manifold triangulations. As a natural generalization of Bézier curves, the new curves are as smooth as possible. In the second part we discuss the construction of C 0 and C 1 piecewise Bézier splines. We also describe how to perform editing operations, such as trimming, using these curves. Special care is taken to achieve interactive rates for modeling tasks. The third part is devoted to the definition and study of convex sets on triangulated surfaces. We derive the convex hull property of geodesic Bézier curves.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aleksandrov, A.D.: A.D. Aleksandrov Selected Works. Intrinsic Geometry of Convex Surfaces. Chapman & Hall/CRC, London/Boca Raton (2006). S.S. Kutateladze (ed.)
Aleksandrov, A.D., Zalgaller, V.A.: Intrinsic Geometry of Surfaces. Translation of Mathematical Monographs, vol. 15. Am. Math. Soc., Providence (1967)
Biermann, H., Martin, I.M., Zorin, D., Bernardini, F.: Sharp features on multiresolution subdivision surfaces. Graph. Models 64(2), 61–77 (2002). http://dx.doi.org/10.1006/gmod.2002.0570
Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New York (1976)
Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proceedings of 6th Annu. ACM Sympos. Comput. Geom., pp. 360–369 (1990)
Coelho, L.C.G., Gattass, M., de Figueiredo, L.H.: Intersecting and trimming parametric meshes on finite-element shells. Int. J. Numer. Methods Eng. 47(4), 777–800 (2000)
Cohen, E., Riesenfeld, R.F., Elber, G.: Geometric Modeling with Splines: An Introduction. A.K. Peters, Ltd., Natick (2001)
Crouch, P., Kun, G., Leite, F.S.: The de Casteljau Algorithm on lie groups and spheres. J. Dyn. Control Syst. 5(3), 397–429 (1999)
de Faget de Casteljau, P.: Outillage Méthodes Calcul, SA André Citroën. Paris, P2108, Internes Dokument (1959)
Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, San Mateo (2002)
Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph. 23(3), 284–293 (2004). http://doi.acm.org/10.1145/1015706.1015716
Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proceedings of 31st Annu. ACM Sympos. Theory Comput., pp. 770–779 (1999)
Kasap, E., Yapici, M., Talay Akyildiz, F.: A numerical study for computation of geodesic curves. Appl. Math. Comput. 171(2), 1206–1213 (2005)
Kimmel, R., Sapiro, G.: Shortening three-dimensional curves via two-dimensional flows. Comput. Math. Appl. 29(3), 49–62 (1995)
Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998). http://citeseer.nj.nec.com/kimmel98computing.html
Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–384 (2004)
Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on lower dimensional formulation. ACM Trans. Comput. Graph. 16(1), 74–106 (1997)
Lages, E.: Curso de análise, 2. Projeto Euclides, 5 (1999)
Litke, N., Levin, A., Schröder, P.: Trimming for subdivision surfaces. Comput. Aided Geom. Des. 18(5), 463–481 (2001)
Martínez, D., Velho, L., Carvalho, P.C.: Computing geodesics on triangular meshes. Comput. Graph. 29(5), 667–675 (2005)
Martínez, D., Carvalho, P.C., Velho, L.: Geodesic Bézier curves: a tool for modeling on triangulations. In: Proceedings of SIBGRAPI 2007–XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 71–78. IEEE Comput. Soc., Los Alamitos (2007)
Mémoli, F., Sapiro, G.: Distance functions and geodesics on submanifolds of ℝd and point clouds. SIAM J. Appl. Math. 65(4), 1227–1260 (2005)
Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987)
Park, F.C., Ravani, B.: Bezier curves on Riemannian manifolds and Lie groups with kinematic applications. J. Mech. Des. 117, 36–40 (1995)
Pottmann, H., Hofer, M.: A variational approach to spline curves on surfaces. Comput. Aided Geom. Des. 22(7), 693–709 (2005)
Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics, pp. 135–150. Springer, Heidelberg (1998)
Rodriguez, R.C., Leite, F.S., Jacubiak, J.: A new geometric algorithm to generate smooth interpolating curves on Riemannian manifolds. LMS J. Comput. Math. 8, 251–266 (2005)
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., Hoppe, H.: Fast exact and approximate geodesics on meshes. Proc. ACM SIGGRAPH 2005, 553–560 (2005)
Wallner, J., Pottmann, H.: Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25(2), 356–374 (2006)
Wallner, J., Dyn, N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22(7), 593–622 (2005)
Wallner, J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24(3), 289–318 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Morera, D.M., Carvalho, P.C. & Velho, L. Modeling on triangulations with geodesic curves. TVC 24, 1025–1037 (2008). https://doi.org/10.1007/s00371-008-0298-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-008-0298-9