Skip to main content
Log in

Visual simulation of thermal fluid dynamics in a pressurized water reactor

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a simulation and visualization system for a critical application—analysis of the thermal fluid dynamics inside a pressurized water reactor of a nuclear power plant when cold water is injected into the reactor vessel. We employ a hybrid thermal lattice Boltzmann method (HTLBM), which has the advantages of ease of parallelization and ease of handling complex simulation boundaries. For efficient computation and storage of the irregular-shaped simulation domain, we classify the domain into nonempty and empty cells and apply a novel packing technique to organize the nonempty cells. This method is implemented on a GPU cluster for acceleration. We demonstrate the formation of cold-water plumes in the reactor vessel. A set of interactive visualization tools, such as side-view slices, 3D volume rendering, thermal layers rendering, and panorama rendering, are provided to collectively visualize the structure and dynamics of the temperature field in the vessel. To the best of our knowledge, this is the first system that combines 3D simulation and visualization for analyzing thermal shock risk in a pressurized water reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: Conjugate gradients and multigrid. ACM Trans. Graph. 22(3), 917–924 (2003)

    Article  Google Scholar 

  2. Chen, S., Doolen, G.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  3. Chu, N.S.-H., Tai, C.: Moxi: Real-time ink dispersion in absorbent paper. ACM Trans. Graph. 24(3), 504–511 (2005)

    Article  Google Scholar 

  4. Crane, K., Llamas, I., Tariq, S.: Real-time simulation and rendering of 3D fluids. In: Nguyen, H. (ed.) GPU Gems 3, pp. 633–676. Addison–Wesley, Reading (2007)

    Google Scholar 

  5. D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. R. Soc. Lond. Philos. Trans., Ser. A 360(1792), 437–451 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dyken, C., Ziegler, G., Theobalt, C., Seidel, H.-P.: Histopyramids in iso-surface extraction. Technical Report, Max Planck Inst. für Infor. (2007)

  7. Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp. 9–16 (2001)

  8. EricksonKirk, M., Junge, M., Arcieri, W., Bass, B., Beaton, R., Bessette, D., Chang, T., Dickson, T., Fletcher, C., Kolaczkowski, A., Malik, S., Mintz, T., Pugh, C., Simonen, F., Siu, N., Whitehead, D., Williams, P., Woods, R., Yin, S.: Technical basis for revision of the pressurized thermal shock (PTS) screening limit in the PTS rules (10 CFR 50.61). NUREG-1806, 1 (2006)

  9. Everitt, C.: Interactive order-independent transparency. Technical Report, NVIDIA Corporation (2001)

  10. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high performance computing. In: ACM/IEEE Supercomputing Conference, p. 47 (2004)

  11. Fan, Z., Qiu, F., Kaufman, A.: Zippy: A framework for computation and visualization on a GPU cluster. Comput. Graph. Forum 27(2), 341–350 (2008)

    Article  Google Scholar 

  12. Goodnight, N., Woolley, C., Lewin, G., Luebke, D., Humphreys, G.: A multigrid solver for boundary value problems using programmable graphics hardware. In: ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 102–111 (2003)

  13. Harris, M., Baxter, W.V., Scheuermann, T., Lastra, A.: Simulation of cloud dynamics on graphics hardware. In: ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 92–101 (2003)

  14. Krüger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: IEEE Vis., pp. 287–292 (2003)

  15. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. 22(3), 908–916 (2003)

    Article  Google Scholar 

  16. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions. Phys. Rev. E 68(3), 036706 (2003)

    Article  MathSciNet  Google Scholar 

  17. Li, F., Modarres, M.: Probabilistic modeling for fracture mechanic studies of reactor vessels with characterization of uncertainties. Nucl. Eng. Des. 235(1), 1–19 (2005)

    Article  Google Scholar 

  18. Li, W., Wei, X., Kaufman, A.: Implementing lattice Boltzmann computation on graphics hardware. Vis. Comput. 19(7–8), 444–456 (2003)

    Google Scholar 

  19. Li, W., Fan, Z., Wei, X., Kaufman, A.: Flow simulation with complex boundaries. In: Pharr, M. (ed.) GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation, pp. 747–764. Addison–Wesley, Reading (2005)

    Google Scholar 

  20. Lobner, P., Donahoe, C., Vavallin, C.: Overview and comparison of U.S. commercial nuclear power plants. Technical Report NUREG/CR-5640 (1990)

  21. Martin, A., Bellet, S.: CFD-tools qualification for thermal-hydraulics pressurized thermal shock analysis. J. Press. Vessel Technol. 125(4), 418–424 (2003)

    Article  Google Scholar 

  22. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  23. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation. Oxford University Press, London (2001)

    Google Scholar 

  24. Thürey, N., Ruede, U.: Free surface lattice-Boltzmann fluid simulations with and without level sets. Vis. Model. Vis., pp. 199–207 (2004)

  25. van Treeck, C., Rank, E., Krafczyk, M., Tölke, J., Nachtwey, B.: Extension of a hybrid thermal LBE scheme for large-eddy simulations of turbulent convective flows. Comput. Fluids 35(8–9), 863–871 (2006)

    Google Scholar 

  26. Wei, X., Li, W., Mueller, K., Kaufman, A.: Simulating fire with texture splats. IEEE Vis., pp. 227–234 (2002)

  27. Wei, X., Zhao, Y., Fan, Z., Li, W., Qiu, F., Yoakum-Stover, S., Kaufman, A.: Lattice-based flow field modeling. IEEE Trans. Vis. Comput. Grap. 10(6), 719–729 (2004)

    Article  Google Scholar 

  28. Zhao, Y.: Lattice Boltzmann based PDE solver on the GPU. Vis. Comput. 24(5), 323–333 (2008)

    Article  Google Scholar 

  29. Zhao, Y., Han, Y., Fan, Z., Qiu, F., Kuo, Y., Kaufman, A.E., Mueller, K.: Visual simulation of heat shimmering and mirage. IEEE Trans. Vis. Comput. Graph. 13(1), 179–189 (2007)

    Article  Google Scholar 

  30. Zhu, H., Liu, X., Liu, Y., Wu, E.: Simulation of miscible binary mixtures based on lattice Boltzmann method. Comput. Animat. Virtual Worlds 17(3–4), 403–410 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Z., Kuo, YC., Zhao, Y. et al. Visual simulation of thermal fluid dynamics in a pressurized water reactor. Vis Comput 25, 985–996 (2009). https://doi.org/10.1007/s00371-008-0309-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0309-x

Keywords

Navigation