Skip to main content

Advertisement

Log in

In vivo interactive visualization of four-dimensional blood flow patterns

Realtime assessment of volumetric phase contrast MRI

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper we give an overview over a series of experiments to visualize and measure flow fields in the human vascular system with respect to their diagnostic capabilities. The experiments utilize a selection of GPU-based sparse and dense flow visualization algorithms to show the diagnostic opportunities for volumetric cardiovascular phase contrast magnetic resonance imaging data sets. Besides classical hardware accelerated particle and line-based approaches, an extensible tublet-based visualization, a four-dimensional volumetric line integral convolution and a new two-dimensional cutting plane tool for three-dimensional velocity data sets have been implemented. To evaluate the results, several hearts of human subjects have been investigated and a flow phantom was built to artificially simulate distinctive flow features. Our results demonstrate that we are able to provide an interactive tool for cardiovascular diagnostics with complementary hardware accelerated visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angel, E.: Interactive Computer Graphics: A Top-Down Approach Using OpenGL, 4th edn. Addison-Wesley, Reading (2005)

    Google Scholar 

  2. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 263–270. ACM, New York (1993)

    Chapter  Google Scholar 

  3. Cebral, J., Castro, M., Appanaboyina, S., Putman, C., Millan, D., Frangi, A.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24(4), 457–467 (2005)

    Article  Google Scholar 

  4. Edelman, R.R., Hesselink, J.R., Zlatkin, M.B. III, J.V.C. (eds.): Clinical Magnetic Resonance Imaging, vols. 1–3, 3rd edn. Sauners Elsevier, Philadelphia (2006). URL http://www.clinicalmri.com/

  5. Gonzalez, E., Schoephoerster, R.: A simulation of three-dimensional systolic flow dynamics in a spherical ventricle: effects of abnormal wall motion. Ann. Biomed. Eng. 24, 48–57 (1996)

    Article  Google Scholar 

  6. Grabner, M., Laramee, R.S.: Image space advection on graphics hardware. In: Jüttler, B. (ed.) SCCG ’05: Proceedings of the 21st Spring Conference on Computer Graphics, pp. 77–84. ACM, New York (2005)

    Chapter  Google Scholar 

  7. Helgeland, A., Andreassen, O.: Visualization of vector fields using seed lic and volume rendering. IEEE Trans. Vis. Comput. Graph. 10(6), 673–682 (2004)

    Article  Google Scholar 

  8. Kolb, A., Latta, L., Rezk-Salama, C.: Hardware-based simulation and collision detection for large particle systems. In: HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 123–131. ACM, New York (2004)

    Chapter  Google Scholar 

  9. Kruger, J., Kipfer, P., Kondratieva, P., Westermann, R.: A particle system for interactive visualization of 3d flows. IEEE Trans. Vis. Comput. Graph. 11-6, 744–756 (2005)

    Article  Google Scholar 

  10. Kvitting, J., Ebbers, T., Wingstroem, L., Engvall, J., Olin, C., Bolger, A.: Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J. Thorac. Cardiovasc. Surg. 127, 1602–1607 (2004)

    Article  Google Scholar 

  11. Laramee, R., Hauser, H., Doleisch, H., Vrolijk, B., Post, F., Weiskopf, D.: The state of the art in flow visualization: Dense and texture-based techniques. Comput. Graph. Forum 23(2), 203–221 (2004)

    Article  Google Scholar 

  12. Latta, L.: Building a million particle system. In: Game Developers Conference 2004 (2004). This document is available under the following link: http://www.2ld.de/gdc2004/, last visited on January 11th 2009

  13. de Leeuw, W., van Liere, R.: Comparing lic and spot noise. In: VIS ’98: Proceedings of the Conference on Visualization ’98, pp. 359–365. IEEE Comput. Soc. Press, Los Alamitos (1998)

    Google Scholar 

  14. de Leeuw, W.C., Wijk, J.J.V.: Enhanced spot noise for vector field visualization. In: Visualization Conference, IEEE, p. 233 (1995)

  15. Ley, S., Unterhinninghofen, R., Ley-Zaporozhan, J., Schenk, J., Kauczor, H., Szabo, G.: Validation of magnetic resonance phase-contrast flow measurements in the main pulmonary artery and aorta using perivascular ultrasound in a large animal model. Invest. Radiol. 43(6), 421–426 (2008)

    Article  Google Scholar 

  16. Liu, Z., Moorhead, R.J.: Accelerated unsteady flow line integral convolution. IEEE Trans. Vis. Comput. Graph. 11(2), 113–125 (2005)

    Article  Google Scholar 

  17. Markl, M., Alley, M.T., Chan, F.P., Wedding, K.L., Draney, M.T., Elkins, C.J., Parker, D.W., Wicker, R., Taylor, C.A., Herfkens, R.J., Pelc, N.J.: Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging 17, 499–506 (2003)

    Article  Google Scholar 

  18. Merhof, D., Sonntag, M., Enders, F., Nimsky, C., Greiner, G.: Hybrid visualization for white matter tracts using triangle strips and point sprites. IEEE Trans. Vis. Comput. Graph. 12(5), 1181–1188 (2006)

    Article  Google Scholar 

  19. Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P., McGloughlin, T.: 3-d numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 127, 767–775 (2005)

    Article  Google Scholar 

  20. Nerem, R. Jr., Gross, D., Hamlin, R., Geiger, G.: Hot-film anemometer velocity measurements of arterial blood flow in horses. Circ. Res. 34, 193–203 (1974)

    Google Scholar 

  21. Reiter, G., Reiter, U., Kainz, B., Greiser, A., Bischof, H., Rienmüller, R.: Mr vector field measurement and visualization of normal and pathological time-resolved three-dimensional cardiovascular blood flow patterns. J. Cardiovasc. Magn. Reson. 9, 237–238 (2007)

    Google Scholar 

  22. Reiter, G., Reiter, U., Kovacs, G., Kainz, B., Schmidt, K., Maier, R., Olschewski, H., Rienmueller, R.: Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ. Cardiovasc. Imaging 1(1), 23–30 (2008)

    Article  Google Scholar 

  23. Rezk-Salama, C., Hastreiter, P., Christian, T., Ertl, T.: Interactive exploration of volume line integral convolution based on 3D-texture mapping. In: Ebert, D., Gross, M., Hamann, B. (eds.) IEEE Visualization ’99, pp. 233–240. San Francisco (1999)

  24. Schoephoerster, R., Silva, C., Ray, G.: Evaluation of left ventricular function based on simulated systolic flow dynamics computed from regional wall motion. J. Biomech. 27, 125–136 (1994)

    Article  Google Scholar 

  25. Stalling, D., Hege, H.C.: Fast and resolution independent line integral convolution. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–256. ACM, New York (1995)

    Chapter  Google Scholar 

  26. Taylor, T., Yamaguchi, T.: Flow patterns in three-dimensional left ventricular systolic and diastolic flows determined from computational fluid dynamics. Biorheology 32, 61–71 (1995)

    Google Scholar 

  27. Weiskopf, D.: GPU-Based Interactive Visualization Techniques. Springer, Berlin (2007)

    MATH  Google Scholar 

  28. Wigstroem, L., Ebbers, T., Fyrenius, A., Karlsson, M., Engvall, J., Wranne, B., Bolger, A.F.: Particle trace visualization of intracardiac flow using time-resolved 3d phase contrast MRI. Magn. Reson. Med. 41, 793–799 (1999)

    Article  Google Scholar 

  29. van Wijk, J.: Spot noise texture synthesis for data visualization. In: SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer graphics and interactive techniques, pp. 309–318. ACM, New York (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Kainz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Below is the link to the electronic supplementary material

Below is the link to the electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kainz, B., Reiter, U., Reiter, G. et al. In vivo interactive visualization of four-dimensional blood flow patterns. Vis Comput 25, 853–862 (2009). https://doi.org/10.1007/s00371-009-0315-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0315-7

Keywords

Navigation