Skip to main content
Log in

Feature enhancement by volumetric unsharp masking

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Feature enhancement is important for the interpretation of complex structures and the detection of local details in volume visualization. We present a simple and effective method, volumetric unsharp masking, to enhance local contrast of features. In general, unsharp masking is an operation that adds the scaled high-frequency part of the signal to itself. The signal in this paper is the radiance at each sample point in the ray-casting based volume rendering, and the radiance depends on both transfer functions and lighting. Our volumetric unsharp masking modulates the radiance by adding back the scaled difference between the radiance and the smoothed radiance. This local color modulation does not change the shape of features due to the same opacity, but it does enhance local contrast of structures in a unified manner. We implemented volumetric unsharp masking at interactive frame rates based on current GPU features, and performed experiments on various volume data sets to validate this local contrast enhancement. The results showed that volumetric unsharp masking reveals more local details and improves depth perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kindlmann, G.: Transfer function in direct volume rendering: Design, interface, interaction. ACM SIGGRAPH 2008 Course Notes (2002)

  2. Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven feature enhancement in volume visualization. IEEE Trans. Vis. Comput. Graph. 11(4), 408–418 (2005)

    Article  Google Scholar 

  3. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving volume rendering. In: Proceedings of EuroVis 2005, pp. 69–76 (2005)

  4. Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. ACM Trans. Graph. 25(3), 1199–1205 (2006) (SIGGRAPH 2006)

    Article  Google Scholar 

  5. Ritschel, T., Smith, K., Ihrke, M., Grosch, T., Myszkowski, K., Seidel, H.-P.: 3D unsharp masking for scene coherent enhancement. ACM Trans. Graph. 27(3), 1–8 (2008) (SIGGRAPH 2008)

    Article  Google Scholar 

  6. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  7. Behrens, U., Ratering, R.: Adding shadows to a texture-based volume renderer. In: Proceedings of IEEE symposium on Volume Visualization 1998, pp. 39–46 (1998)

  8. Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003)

    Article  Google Scholar 

  9. Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing to enhance real time molecular visualization. IEEE Trans. Vis. Comput. Graph. 12(6), 1237–1244 (2006) (Visualization 2006)

    Article  Google Scholar 

  10. Ropinski, T., Meyer-Spradow, J., Diepenbrock, S., Mensmann, J., Hinrichs, K.: Interactive volume rendering with dynamic ambient occlusion and color bleeding. Comput. Graph. Forum 27(2), 567–576 (2008) (Eurographics 2008)

    Article  Google Scholar 

  11. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)

    Article  Google Scholar 

  12. Rheingans, P., Ebert, D.S.: Volume illustration: Non-photorealistic rendering of volume models. IEEE Trans. Vis. Comput. Graph. 7(3), 253–264 (2001)

    Article  Google Scholar 

  13. Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: Proceedings of IEEE Visualization 2003, pp. 513–520 (2003)

  14. Svakhine, N.A., Ebert, D.S.: Interactive volume illustration and feature halos. In: Proceedings of the Pacific Conference on Computer Graphics and Applications 2003, pp. 347–354 (2003)

  15. Bruckner, S., Gröller, E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graph. 13(6), 1344–1351 (2007) (Visualization 2007)

    Article  Google Scholar 

  16. Marchesin, S., Dischler, J.-M., Mongener, C.: Feature enhancement using locally adaptive volume rendering. In: Proceedings of IEEE/Eurographics International Symposium on Volume Graphics 2007, pp. 41–48 (2007)

  17. Stewart, A.J.: Vicinity shading for enhanced perception of volumetric data. In: Proceedings of IEEE Visualization 2003, pp. 355–362 (2003)

  18. Cignoni, P., Scopigno, R., Tarini, M.: A simple normal enhancement technique for interactive non-photorealistic renderings. Comput. Graph. 29(1), 125–133 (2005)

    Article  Google Scholar 

  19. Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph. 25(3), 1206–1213 (2006) (SIGGRAPH 2006)

    Article  Google Scholar 

  20. Badamchizadeh, M.A., Aghagolzadeh, A.: Comparative study of unsharp masking methods for image enhancement. In: Proceedings of International Conference on Image and Graphics 2004, pp. 27–30 (2004)

  21. Kindlmann, G., Durkin, J.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE symposium on Volume Visualization 1998, pp. 79–86 (1998)

  22. Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf, D.: Real-time Volume Graphics. AK-Peters, Wellesley (2006)

    Google Scholar 

  23. Wittenbrink, C.M., Malzbender, T., Goss, M.E.: Opacity-weighted color interpolation for volume sampling. In: Proceedings of IEEE Symposium on Volume Visualization 1998, pp. 135–142 (1998)

  24. Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In: Proceedings of Graphics Hardware 2001, pp. 9–16 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Lin, H., Bao, H. et al. Feature enhancement by volumetric unsharp masking. Vis Comput 25, 581–588 (2009). https://doi.org/10.1007/s00371-009-0328-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0328-2

Keywords

Navigation