Skip to main content
Log in

Curvature-based anisotropic geodesic distance computation for  parametric and implicit surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Distribution of geometric features varies with direction, including, for example, normal curvature. In this paper, this characteristic of shape is used to define a new anisotropic geodesic (AG) distance for both parametric and implicit surfaces. Local distance (LD) from a point is defined as a function of both the point and a unit tangent plane directions, and a total distance is defined as an integral of that local distance. The AG distance between points on the surface is the minimum total distance between them. The path between the points that attains the minimum is called the anisotropic geodesic path. Minimization of total distance to attain the AG distance is performed by associating the LD function with a tensor speed function that controls wave propagation in the convex Hamilton–Jacobi (H–J) equation solver. We present new distance metrics for both parametric and implicit surfaces based on the curvature tensor. In order to solve for the implicit AG, a bounded 3D H–J equation solver was developed. We present a second metric for the AG distance, a difference curvature tensor, for parametric surfaces. Some properties of both new AG distances are presented, including parameterization invariance. This AG path differs from the usual geodesic in that minimal path, i.e., lowest cost path, roughly speaking, minimizes an integral of curvature along the curve. Then, the effectiveness of the proposed AG distances as shape discriminators is demonstrated in several applications, including surface segmentation and partial shape matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, D.C., Gee, J.C.: Elastic matching of diffusion tensor images. Comput. Vis. Image Underst. 77(9), 233–250 (2000)

    Article  Google Scholar 

  2. Ankerst, M., Kastenmller, G., Kriegel, H.P., Seidl, T.: 3d shape histograms for similarity search and classification in spatial databases. In: SSD’99, pp. 207–226. Springer, Berlin (1999)

    Google Scholar 

  3. Belongie, S., Malik, J., Puzicha, J.: Matching shapes. ICCV 01, 454 (2001)

    Google Scholar 

  4. Belyaev, A.G., Pasko, A.A., Kunii, T.L.: Ridges and ravines on implicit surfaces. In: CGI’98, p. 530. IEEE Comput. Soc., Los Alamitos (1998)

    Google Scholar 

  5. Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton–Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9(2), 57–69 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Devir, Y.S., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. Technical Report (2007)

  7. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Weighted distance maps computation on parametric three-dimensional manifolds. J. Comput. Phys. 225(1), 771–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Han, Y.: Shortest paths on a polyhedron. Int. J. Comput. Geom. Appl. 6(2), 127–144 (1990)

    Article  MathSciNet  Google Scholar 

  9. Chen, D.Y., Ouhyoung, M., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity-based 3d model retrieval. In: Eurographics, pp. 223–232. Granada, Spain (2003)

  10. Cheng, S.W., Na, H.S., Vigneron, A., Wang, Y.: Approximate shortest paths in anisotropic regions. In: SODA’07, pp. 766–774. Philadelphia, PA, USA (2007)

  11. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: SIGGRAPH’04: ACM SIGGRAPH 2004 Papers, pp. 905–914. ACM, New York (2004). http://doi.acm.org/10.1145/1186562.1015817

    Chapter  Google Scholar 

  12. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Trans. Graph 22(3), 848–855 (2003)

    Article  Google Scholar 

  13. Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26(3), 737–761 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elad, A., Kimmel, R.: On bending-invariant signatures for surfaces. IEEE Trans. Pattern. Anal. Mach. Intell. 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  15. Funkhouser, T., Shilane, P.: Partial matching of 3d shapes with priority-driven search. In: Proceedings of Symposium on Geometry Processing, pp. 131–142 (2006)

  16. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph 23(3), 652–663 (2004)

    Article  Google Scholar 

  17. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph 25(1), 130–150 (2006)

    Article  Google Scholar 

  18. Guillaume, L., Florent, D., Atilla, B.: Curvature tensor-based triangle mesh segmentation with boundary rectification. In: CGI’04, pp. 10–17. IEEE Comput. Soc., Los Alamitos (2004)

    Google Scholar 

  19. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: SIGGRAPH’01, pp. 203–212. ACM, New York (2001)

    Google Scholar 

  20. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph 23(3), 284–293 (2004)

    Article  Google Scholar 

  21. Iyanaga, S., Kawada, Y.: Finsler Spaces. MIT Press, Cambridge (1980)

    Google Scholar 

  22. Jeong, W.K., Fletcher, P.T., Tao, R., Whitaker, R.: Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton–Jacobi solver. IEEE Trans. Vis. Comput. Graph. 13(6), 1480–1487 (2007)

    Article  Google Scholar 

  23. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  24. Kanai, T., Suzuki, H.: Approximate shortest path on polyhedral surface based on selective refinement of the discrete graph and its applications. In: GMP, vol. 2000, p. 241 (2000)

  25. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. In: SIGGRAPH’03, pp. 954–961. ACM, New York (2003)

    Google Scholar 

  26. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Shape matching and anisotropy. In: SIGGRAPH’04, pp. 623–629. ACM Press, New York (2004)

    Google Scholar 

  27. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. In: Proceedings of National Academy of Sciences, pp. 8431–8435 (1998)

  28. Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: VIS’03, p. 67. IEEE Comput. Soc., Los Alamitos (2003)

    Google Scholar 

  29. Lai, Y.K., Zhou, Q.Y., Hu, S.M., Martin, R.R.: Feature-sensitive mesh segmentation. In: SPM’06, pp. 17–25. ACM, New York (2006)

    Google Scholar 

  30. Mangan, A.P., Whitaker, R.T.: Partitioning 3d surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)

    Article  Google Scholar 

  31. Mémoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173(2), 730–764 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Meyer, M., Kirby, R.M., Whitaker, R.: Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE Trans. Vis. Comput. Graph. 13(6), 1704–1711 (2007)

    Article  Google Scholar 

  33. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16(4), 647–668 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Page, D.L., Koschan, A.F., Abidi, M.A.: Perception-based 3d triangle mesh segmentation using fast marching watersheds. In: CVPR, vol. 02, p. 27 (2003)

  35. Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006)

    Article  Google Scholar 

  36. Pichon, E., Westin, C.F., Tannenbaum, A.: A Hamilton–Jacobi–Bellman approach to high angular resolution diffusion tractography. In: MICCAI, pp. 180–187 (2005)

  37. Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application to feature-sensitive morphology on surfaces. In: Computer Vision—ECCV 2004, pp. 18–23 (2004)

  38. Prados, E., Soatto, S., Lenglet, C., Pons, J.P., Wotawa, N., Deriche, R., Faugeras, O.: Control theory and fast marching techniques for brain connectivity mapping. In: CVPR’06, pp. 1076–1083 (2006)

  39. Razdan, A., Bae, M.: A hybrid approach to feature segmentation of triangle meshes. Comput. Aided Des. 35(9), 783–789 (2003)

    Article  Google Scholar 

  40. Reif, J.H., Sun, Z.: Movement planning in the presence of flows. Algorithmica 39(2), 127–153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sellen, J.: Direction weighted shortest path planning. In: Proceedings of the ICRA, pp. 1970–1975 (1995)

  42. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. In: Proc. Natl. Acad. Sci., vol. 93, pp. 1591–1595 (1996)

  43. Sethian, J.A., Popovici, A.M.: 3-d travel-time computation using the fast marching method. Geophysics 64(2), 516–523 (2006)

    Article  Google Scholar 

  44. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sifri, O., Sheffer, A., Gotsman, C.: Geodesic based surface remeshing. In: Proc. 12th International Meshing Roundtable, pp. 189–199 (2003)

  47. Skiena, S.S.: The Algorithm Design Manual. Springer, Berlin (2000)

    Google Scholar 

  48. Sloan, P.P.J., Charles, F., Rose, I., Cohen, M.F.: Shape by example. In: I3D’01, pp. 135–143. ACM, New York (2001)

    Google Scholar 

  49. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph 24(3), 553–560 (2005)

    Article  Google Scholar 

  50. Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 659–672 (2003)

    Article  MathSciNet  Google Scholar 

  51. Watanabe, K., Belyaev, A.: Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum 20, 385–392 (2001)

    Article  Google Scholar 

  52. Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by Gaussian curvature. The Visual Computer 21(8–10), 659–668 (2005)

    Article  Google Scholar 

  53. Zhang, Y., Paik, J., Koschan, A., Abidi, M., Gorsich, D.: A simple and efficient algorithm for part decomposition of 3d triangulated models based on curvature analysis. In: IEEE International conference on Image Processing, pp. 273–276 (2002)

  54. Zhou, K., Synder, J., Guo, B., Shum, H.Y.: Iso-charts: stretch-driven mesh parameterization using spectral analysis. In: SGP’04, pp. 45–54. ACM, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Kyung Seong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seong, JK., Jeong, WK. & Cohen, E. Curvature-based anisotropic geodesic distance computation for  parametric and implicit surfaces. Vis Comput 25, 743–755 (2009). https://doi.org/10.1007/s00371-009-0362-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0362-0

Keywords

Navigation