Abstract
Distribution of geometric features varies with direction, including, for example, normal curvature. In this paper, this characteristic of shape is used to define a new anisotropic geodesic (AG) distance for both parametric and implicit surfaces. Local distance (LD) from a point is defined as a function of both the point and a unit tangent plane directions, and a total distance is defined as an integral of that local distance. The AG distance between points on the surface is the minimum total distance between them. The path between the points that attains the minimum is called the anisotropic geodesic path. Minimization of total distance to attain the AG distance is performed by associating the LD function with a tensor speed function that controls wave propagation in the convex Hamilton–Jacobi (H–J) equation solver. We present new distance metrics for both parametric and implicit surfaces based on the curvature tensor. In order to solve for the implicit AG, a bounded 3D H–J equation solver was developed. We present a second metric for the AG distance, a difference curvature tensor, for parametric surfaces. Some properties of both new AG distances are presented, including parameterization invariance. This AG path differs from the usual geodesic in that minimal path, i.e., lowest cost path, roughly speaking, minimizes an integral of curvature along the curve. Then, the effectiveness of the proposed AG distances as shape discriminators is demonstrated in several applications, including surface segmentation and partial shape matching.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alexander, D.C., Gee, J.C.: Elastic matching of diffusion tensor images. Comput. Vis. Image Underst. 77(9), 233–250 (2000)
Ankerst, M., Kastenmller, G., Kriegel, H.P., Seidl, T.: 3d shape histograms for similarity search and classification in spatial databases. In: SSD’99, pp. 207–226. Springer, Berlin (1999)
Belongie, S., Malik, J., Puzicha, J.: Matching shapes. ICCV 01, 454 (2001)
Belyaev, A.G., Pasko, A.A., Kunii, T.L.: Ridges and ravines on implicit surfaces. In: CGI’98, p. 530. IEEE Comput. Soc., Los Alamitos (1998)
Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton–Jacobi equations based on a local variational principle. Comput. Vis. Sci. 9(2), 57–69 (2006)
Bronstein, A.M., Bronstein, M.M., Devir, Y.S., Kimmel, R.: Parallel algorithms for approximation of distance maps on parametric surfaces. Technical Report (2007)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Weighted distance maps computation on parametric three-dimensional manifolds. J. Comput. Phys. 225(1), 771–784 (2007)
Chen, J., Han, Y.: Shortest paths on a polyhedron. Int. J. Comput. Geom. Appl. 6(2), 127–144 (1990)
Chen, D.Y., Ouhyoung, M., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity-based 3d model retrieval. In: Eurographics, pp. 223–232. Granada, Spain (2003)
Cheng, S.W., Na, H.S., Vigneron, A., Wang, Y.: Approximate shortest paths in anisotropic regions. In: SODA’07, pp. 766–774. Philadelphia, PA, USA (2007)
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: SIGGRAPH’04: ACM SIGGRAPH 2004 Papers, pp. 905–914. ACM, New York (2004). http://doi.acm.org/10.1145/1186562.1015817
DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Trans. Graph 22(3), 848–855 (2003)
Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26(3), 737–761 (2005)
Elad, A., Kimmel, R.: On bending-invariant signatures for surfaces. IEEE Trans. Pattern. Anal. Mach. Intell. 25(10), 1285–1295 (2003)
Funkhouser, T., Shilane, P.: Partial matching of 3d shapes with priority-driven search. In: Proceedings of Symposium on Geometry Processing, pp. 131–142 (2006)
Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph 23(3), 652–663 (2004)
Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph 25(1), 130–150 (2006)
Guillaume, L., Florent, D., Atilla, B.: Curvature tensor-based triangle mesh segmentation with boundary rectification. In: CGI’04, pp. 10–17. IEEE Comput. Soc., Los Alamitos (2004)
Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: SIGGRAPH’01, pp. 203–212. ACM, New York (2001)
Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph 23(3), 284–293 (2004)
Iyanaga, S., Kawada, Y.: Finsler Spaces. MIT Press, Cambridge (1980)
Jeong, W.K., Fletcher, P.T., Tao, R., Whitaker, R.: Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton–Jacobi solver. IEEE Trans. Vis. Comput. Graph. 13(6), 1480–1487 (2007)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)
Kanai, T., Suzuki, H.: Approximate shortest path on polyhedral surface based on selective refinement of the discrete graph and its applications. In: GMP, vol. 2000, p. 241 (2000)
Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. In: SIGGRAPH’03, pp. 954–961. ACM, New York (2003)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Shape matching and anisotropy. In: SIGGRAPH’04, pp. 623–629. ACM Press, New York (2004)
Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. In: Proceedings of National Academy of Sciences, pp. 8431–8435 (1998)
Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: VIS’03, p. 67. IEEE Comput. Soc., Los Alamitos (2003)
Lai, Y.K., Zhou, Q.Y., Hu, S.M., Martin, R.R.: Feature-sensitive mesh segmentation. In: SPM’06, pp. 17–25. ACM, New York (2006)
Mangan, A.P., Whitaker, R.T.: Partitioning 3d surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)
Mémoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173(2), 730–764 (2001)
Meyer, M., Kirby, R.M., Whitaker, R.: Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE Trans. Vis. Comput. Graph. 13(6), 1704–1711 (2007)
Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16(4), 647–668 (1987)
Page, D.L., Koschan, A.F., Abidi, M.A.: Perception-based 3d triangle mesh segmentation using fast marching watersheds. In: CVPR, vol. 02, p. 27 (2003)
Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006)
Pichon, E., Westin, C.F., Tannenbaum, A.: A Hamilton–Jacobi–Bellman approach to high angular resolution diffusion tractography. In: MICCAI, pp. 180–187 (2005)
Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application to feature-sensitive morphology on surfaces. In: Computer Vision—ECCV 2004, pp. 18–23 (2004)
Prados, E., Soatto, S., Lenglet, C., Pons, J.P., Wotawa, N., Deriche, R., Faugeras, O.: Control theory and fast marching techniques for brain connectivity mapping. In: CVPR’06, pp. 1076–1083 (2006)
Razdan, A., Bae, M.: A hybrid approach to feature segmentation of triangle meshes. Comput. Aided Des. 35(9), 783–789 (2003)
Reif, J.H., Sun, Z.: Movement planning in the presence of flows. Algorithmica 39(2), 127–153 (2004)
Sellen, J.: Direction weighted shortest path planning. In: Proceedings of the ICRA, pp. 1970–1975 (1995)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. In: Proc. Natl. Acad. Sci., vol. 93, pp. 1591–1595 (1996)
Sethian, J.A., Popovici, A.M.: 3-d travel-time computation using the fast marching method. Geophysics 64(2), 516–523 (2006)
Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)
Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)
Sifri, O., Sheffer, A., Gotsman, C.: Geodesic based surface remeshing. In: Proc. 12th International Meshing Roundtable, pp. 189–199 (2003)
Skiena, S.S.: The Algorithm Design Manual. Springer, Berlin (2000)
Sloan, P.P.J., Charles, F., Rose, I., Cohen, M.F.: Shape by example. In: I3D’01, pp. 135–143. ACM, New York (2001)
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph 24(3), 553–560 (2005)
Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41(2), 659–672 (2003)
Watanabe, K., Belyaev, A.: Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum 20, 385–392 (2001)
Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by Gaussian curvature. The Visual Computer 21(8–10), 659–668 (2005)
Zhang, Y., Paik, J., Koschan, A., Abidi, M., Gorsich, D.: A simple and efficient algorithm for part decomposition of 3d triangulated models based on curvature analysis. In: IEEE International conference on Image Processing, pp. 273–276 (2002)
Zhou, K., Synder, J., Guo, B., Shum, H.Y.: Iso-charts: stretch-driven mesh parameterization using spectral analysis. In: SGP’04, pp. 45–54. ACM, New York (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Seong, JK., Jeong, WK. & Cohen, E. Curvature-based anisotropic geodesic distance computation for parametric and implicit surfaces. Vis Comput 25, 743–755 (2009). https://doi.org/10.1007/s00371-009-0362-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-009-0362-0