Skip to main content
Log in

Performance analysis of a parallel multi-view rendering architecture using light fields

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Multiple view rendering is a common problem for applications where multiple users visualize a common dataset, as in multi-player games and collaborative engineering tools. For a system to be able to render a large number of views at interactive rates efficiently, parallel processing is an attractive technique. In this work, we present the implementation of a pipelined multiview light field renderer using a cluster with GPUs and MPI. We discuss the parallelization model and the problem of partitioning the tasks of the pipeline among the cluster machines based on the pipeline model and the costs of the stages. Our solution achieves 83% efficiency with ten machines, against only 11% efficiency of a naive parallelization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annen, T., Matusik, W., Pfister, H., Seidel, H.P.Z.M.: Distributed rendering for multiview parallax displays. Tech. Rep., Mitsubishi Electric Research Laboratories (2006). Distributed Rendering for Multiview Parallax Displays, SPIE Conference Stereoscopic Displays and Virtual Reality Systems XIII, vol. 6055, pp. 231–240, January 2006, SPIE Proceedings

  2. Halle, M.: Multiple viewpoint rendering. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 243–254. ACM, New York (1998). doi:http://doi.acm.org/10.1145/280814.280884

    Chapter  Google Scholar 

  3. Hasselgren, J., Akenine-Möller, T.: An efficient multi-view rasterization architecture. In: Akenine-Möller, T., Heidrich, W. (eds.) Eurographics Workshop/Symposium on Rendering, pp. 61–72. Eurographics Association, Nicosia (2006). doi:http://doi.acm.org/10.2312/EGWR/EGSR06/061-072

    Google Scholar 

  4. Hübner, T., Zhang, Y., Pajarola, R.: Multi-view point splatting. In: Lee, Y.T., Shamsuddin, S.M.H., Gutierrez, D., Suaib, N.M. (eds.) GRAPHITE, pp. 285–294. ACM, New York (2006)

    Chapter  Google Scholar 

  5. Stewart, J., Bennett, E., McMillan, L.: Pixelview: A view-independent graphics rendering architecture. In: Akenine-Möller, T., McCool, M. (eds.) Proc. of Graphics Hardware, pp. 75–84 (2004)

  6. Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237199

    Chapter  Google Scholar 

  7. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing, pp. 3–20 (1991)

  8. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237200

    Chapter  Google Scholar 

  9. Yang, J.C., Everett, M., Buehler, C., McMillan, L.: A real-time distributed light field camera. In: Proc. of the 13th Eurographics Workshop on Rendering, Italy, pp. 77–86 (2002)

  10. Chai, J.X., Chan, S.C., Shum, H.Y., Tong, X.: Plenoptic sampling. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 307–318. ACM/Addison-Wesley, New York (2000). doi:http://doi.acm.org/10.1145/344779.344932

    Chapter  Google Scholar 

  11. Lin, Z., Shum, H.: On the number of samples needed in light field rendering with constant-depth assumption. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-00), pp. 588–597. IEEE, Los Alamitos (2000)

    Google Scholar 

  12. Lin, Z., Shum, H.Y.: A geometric analysis of light field rendering. Int. J. Comput. Vis. 58(2), 121–138 (2004). doi:http://dx.doi.org/10.1023/B:VISI.0000015916.91741.27

    Article  Google Scholar 

  13. Schirmacher, H., Vogelgsang, C., Seidel, H.P., Greiner, G.: Efficient free form light field rendering (2001)

  14. Todt, S., Rezk-Salama, C., Kolb, A.: Fast (spherical) light field rendering with per-pixel depth. Tech. Rep., University of Siegen (2007)

  15. Ihm, I., Park, S., Lee, R.K.: Rendering of spherical light fields. In: PG ’97: Proceedings of the 5th Pacific Conference on Computer Graphics and Applications, p. 59. IEEE Computer Society, Washington (1997)

    Google Scholar 

  16. Shade, J., Lischinski, D., Salesin, D.H., DeRose, T., Snyder, J.: Hierarchical image caching for accelerated walkthroughs of complex environments. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 75–82. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237209

    Chapter  Google Scholar 

  17. Jeschke, S., Wimmer, M., Schumann, H., Purgathofer, W.: Automatic impostor placement for guaranteed frame rates and low memory requirements. In: I3D ’05: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 103–110. ACM, New York (2005). doi:http://doi.acm.org/10.1145/1053427.1053444

    Chapter  Google Scholar 

  18. Sloan, P.P., Hansen, C.: Parallel lumigraph reconstruction. In: PVGS ’99: Proceedings of the 1999 IEEE Symposium on Parallel Visualization and Graphics, pp. 7–14. IEEE Computer Society, Washington (1999). http://doi.acm.org/10.1145/328712.319331

    Google Scholar 

  19. Strasser, J., Pascucci, V., Ma, K.L.: Multi-layered image caching for distributed rendering of large multiresolution datasets. In: Raffin, B., Heirich, A., Santos, L.P. (eds.) Eurographics Symposium on Parallel Graphics and Visualization, pp. 171–177. Eurographics Association, Braga (2006). doi:http://doi.acm.org/10.2312/EGPGV/EGPGV06/171-177

    Google Scholar 

  20. Wilson, A., Manocha, D.: Simplifying complex environments using incremental textured depth meshes. ACM Trans. Graph. 22(3), 678–688 (2003) doi:http://doi.acm.org/10.1145/882262.882325

    Article  Google Scholar 

  21. Aliaga, D., Cohen, J., Wilson, A., Baker, E., Zhang, H., Erikson, C., Hoff, K., Hudson, T., Stuerzlinger, W., Bastos, R., Whitton, M., Brooks, F., Manocha, D.: MMR: an interactive massive model rendering system using geometric and image-based acceleration. In: I3D ’99: Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 199–206. ACM, New York (1999). doi:http://doi.acm.org/10.1145/300523.300554

    Chapter  Google Scholar 

  22. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 11–20. ACM, New York (1996). doi:http://doi.acm.org/10.1145/237170.237191

    Chapter  Google Scholar 

  23. Heidrich, W., Schirmacher, H., Kück, H., Seidel, H.P.: A warping-based refinement of lumigraphs. In: Thalmann, N., Skala, V. (eds.) Proc. WSCG ’99 (1999)

  24. Vogelgsang, C., Greiner, G.: Adaptive lumigraph rendering with depth maps. Technical Report 3, IMMD 9, Universitaet Erlangen-Nuernberg (2000)

  25. McMillan, L., Bishop, G.: Plenoptic modeling: An image-based rendering system. Comput. Graph. (Ann. Conf. Ser.) 29, 39–46 (1995)

    Google Scholar 

  26. Camahort, E., Lerios, A., Fussell, D.: Uniformly sampled light fields. Tech. Rep., University of Texas at Austin, Austin, TX, USA (1998)

  27. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumigraph rendering. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 425–432. ACM, New York (2001). doi:http://doi.acm.org/10.1145/383259.383309

    Chapter  Google Scholar 

  28. Takahashi, K., Naemura, T.: Unstructured light field rendering using on-the-fly focus measurement. In: ICME, pp. 205–208. IEEE, Los Alamitos (2005)

    Google Scholar 

  29. McMillan, L.: An image-based approach to three-dimensional computer graphics. Ph.D. Thesis, University of North Carolina at Chapel Hill (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorgival Guedes.

Additional information

This paper is partially supported by IBM, CNPq, CAPES, FINEP and Fapemig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lages, W., Cordeiro, C. & Guedes, D. Performance analysis of a parallel multi-view rendering architecture using light fields. Vis Comput 25, 947–958 (2009). https://doi.org/10.1007/s00371-009-0371-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0371-z

Keywords

Navigation