Skip to main content
Log in

Image-space hierarchical coherence buffer

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Indirect illumination plays an important role in global illumination. However, computing indirect illumination is a time-consuming process and needs to be approximated to achieve interactive performance. Indirect illumination varies rather slowly across the surface. This leads to the idea of computing indirect illumination sparsely in the scene and interpolating the result. This paper presents a hierarchical structure, which enables efficient sampling. The hierarchy is constructed in the image space by exploiting coherences among the screen-space pixels. From the hierarchy, samples are chosen, each of which represents a group of coherent pixels. This paper presents two methods of utilizing the samples for indirect lighting computation. The methods produce plausible lighting results and show high performances. The proposed algorithms run entirely in the image space and are easy to implement in contemporary graphic hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: I3D ’05, pp. 203–231 (2005)

    Google Scholar 

  2. Dachsbacher, C., Stamminger, M.: Splatting indirect illumination. In: I3D ’06, pp. 93–100 (2006)

    Google Scholar 

  3. Debattista, K., Dubla, P., Banterle, F., Santos, L.P., Chalmers, A.: Instant caching for interactive global illumination. Comput. Graph. Forum 28(8), 2216–2228 (2009)

    Article  Google Scholar 

  4. Gassenbauer, V., Křivánek, J., Bouatouch, K.: Spatial directional radiance caching. Comput. Graph. Forum 28(4), 1189–1198 (2009)

    Article  Google Scholar 

  5. Gautron, P., Bouatouch, K., Pattanaik, S.: Temporal radiance caching. IEEE Trans. Vis. Comput. Graph. 13(5), 891–901 (2007)

    Article  Google Scholar 

  6. Gautron, P., Křivánek, J., Bouatouch, K., Pattanaik, S.: Radiance cache splatting: a GPU-friendly global illumination algorithm. In: SIGGRAPH ’05 Sketches, p. 36 (2005)

    Chapter  Google Scholar 

  7. Herzog, R., Myszkowski, K., Seidel, H.P.: Anisotropic radiance-cache splatting for efficiently computing high-quality global illumination with lightcuts. Comput. Graph. Forum 28(2), 259–268 (2009)

    Article  Google Scholar 

  8. Keller, A.: Instant radiosity. In: SIGGRAPH ’97, pp. 49–56 (1997)

    Chapter  Google Scholar 

  9. Křivánek, J., Gautron, P., Pattanaik, S., Bouatouch, K.: Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comput. Graph. 11(5), 550–561 (2005)

    Article  Google Scholar 

  10. Laine, S., Karras, T.: Efficient sparse voxel octrees. In: I3D ’10, pp. 55–63 (2010)

    Chapter  Google Scholar 

  11. Nichols, G., Penmatsa, R., Wyman, C.: Interactive, multiresolution image-space rendering for dynamic area lighting. Comput. Graph. Forum 29(4), 1279–1288 (2010)

    Article  Google Scholar 

  12. Nichols, G., Shopf, J., Wyman, C.: Hierarchical image-space radiosity for interactive global illumination. Comput. Graph. Forum 28(4), 1141–1149 (2009)

    Article  Google Scholar 

  13. Nichols, G., Wyman, C.: Multiresolution splatting for indirect illumination. In: I3D ’09, pp. 83–90 (2009)

    Chapter  Google Scholar 

  14. Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.P., Kautz, J., Dachsbacher, C.: Micro-rendering for scalable, parallel final gathering. In: SIGGRAPH Asia ’09, pp. 1–8 (2009)

    Chapter  Google Scholar 

  15. Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C., Kautz, J.: Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27(5), 1–8 (2008)

    Article  Google Scholar 

  16. Saito, T., Takahashi, T.: Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph. 24(4), 197–206 (1990)

    Article  Google Scholar 

  17. Tabellion, E., Lamorlette, A.: An approximate global illumination system for computer generated films. ACM Trans. Graph. 23(3), 469–476 (2004)

    Article  Google Scholar 

  18. Tawara, T., Myszkowski, K., Seidel, H.P.: Exploiting temporal coherence in final gathering for dynamic scenes. In: CGI ’04, pp. 110–119 (2004)

    Google Scholar 

  19. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24(3), 1098–1107 (2005)

    Article  Google Scholar 

  20. Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse interreflection. In: SIGGRAPH ’88, pp. 85–92 (1988)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JungHyun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, K.T., Jang, H. & Han, J. Image-space hierarchical coherence buffer. Vis Comput 27, 759–768 (2011). https://doi.org/10.1007/s00371-011-0562-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0562-2

Keywords

Navigation