Skip to main content
Log in

Parallel and efficient Boolean on polygonal solids

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel framework which can efficiently evaluate approximate Boolean set operations for B-rep models by highly parallel algorithms. This is achieved by taking axis-aligned surfels of Layered Depth Images (LDI) as a bridge and performing Boolean operations on the structured points. As compared with prior surfel-based approaches, this paper has much improvement. Firstly, we adopt key-data pairs to store LDI more compactly. Secondly, robust depth peeling is investigated to overcome the bottleneck of layer-complexity. Thirdly, an out-of-core tiling technique is presented to overcome the limitation of memory. Real-time feedback is provided by streaming the proposed pipeline on the many-core graphics hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, B., Dutré, P.: Interactive boolean operations on surfel-bounded solids. ACM Trans. Graph. 22(3), 651–656 (2003)

    Article  Google Scholar 

  2. Bavoil, L., Myers, K.: Order independent transparency with dual depth peeling. In: Technical report. NVIDIA Corporation (2008)

  3. Chen, Y., Wang, C.L.C.: Layered depth-normal images for complex geometries—part one: Accurate modeling and adaptive sampling. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Brooklyn (2008)

    Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry. Springer, Berlin (1997)

    MATH  Google Scholar 

  5. Everitt, C.: Interactive order-independent transparency. In: Technical report. NVIDIA Corporation (2001)

  6. Goldfeather, J., Hultquist, J.P.M., Fuchs, H.: Fast constructive-solid geometry display in the pixel-powers graphics system. In: Proceedings of SIGGRAPH ’86, pp. 107–116. ACM, New York (1986)

    Chapter  Google Scholar 

  7. Goldfeather, J., Molnar, S., Turk, G., Fuchs, H.: Near real-time csg rendering using tree normalization and geometric pruning. IEEE Comput. Graph. Appl. 9(3), 20–28 (1989)

    Article  Google Scholar 

  8. Hable, J., Rossignac, J.: Blister: Gpu-based rendering of boolean combinations of free-form triangulated shapes. In: Proceedings of SIGGRAPH ’05, pp. 1024–1031. ACM, New York (2005)

    Chapter  Google Scholar 

  9. Hable, J., Rossignac, J.: Cst: Constructive solid trimming for rendering breps and csg. IEEE Trans. Vis. Comput. Graph. 13(5), 1004–1014 (2007)

    Article  Google Scholar 

  10. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with cuda. In: Nguyen, H. (ed.) GPU Gems 3. Addison–Wesley, Reading (2007)

    Google Scholar 

  11. Hoffmann, C.: Robustness in geometric computations. J. Comput. Inf. Sci. Eng. 1(2), 143–155 (2001)

    Article  Google Scholar 

  12. Cuda programming guide for cuda toolkit 3.0. In http://developer.nvidia.com/object/gpucomputing.html. NVIDIA Corporation (2010)

  13. 3d acis modeling. In http://www.spatial.com. Spatial Corporation (2010)

  14. Rhinoceros. In http://www.rhino3d.com. Robert McNeel & Associates (2010)

  15. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Graph. 21(3), 339–346 (2002)

    Article  Google Scholar 

  16. Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.-P.: Feature sensitive surface extraction from volume data. In: Proceedings of SIGGRAPH ’01, pp. 57–66. ACM, New York (2001)

    Chapter  Google Scholar 

  17. Krishnan, S., Gopi, M., Manocha, D., Mine, M.R.: Interactive boundary computation of boolean combinations of sculptured solids. Comput. Graph. Forum 16(3), 67–78 (1997)

    Article  Google Scholar 

  18. Krishnan, S., Manocha, D., Gopi, M., Culver, T., Keyser, J.: Boole: A boundary evaluation system for boolean combinations of sculptured solids. Int. J. Comput. Geom. Appl. 11(1), 105–144 (2001)

    Article  MATH  Google Scholar 

  19. Liu, F., Huang, M.-C., Liu, X.-H., Wu, E.-H.: Freepipe: a programmable parallel rendering architecture for efficient multi-fragment effects. In: Proceedings of the ACM Symposium on Interactive 3D Graphics and Games, pp. 75–82. ACM, New York (2010)

    Chapter  Google Scholar 

  20. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of SIGGRAPH ’87, pp. 163–169. ACM, New York (1987)

    Chapter  Google Scholar 

  21. Müller, C., Frey, S., Strengert, M., Dachsbacher, C., Ertl, T.: A compute unified system architecture for graphics clusters incorporating data locality. IEEE Trans. Vis. Comput. Graph. 15(4), 605–617 (2009)

    Article  Google Scholar 

  22. Myers, K., Bavoil, L.: Stencil routed a-buffer. In: ACM SIGGRAPH ’07 Technical Sketch Program. ACM, New York (2007)

    Google Scholar 

  23. Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape modeling with point-sampled geometry. In: Proceedings of SIGGRAPH ’03, pp. 641–650. ACM, New York (2003)

    Chapter  Google Scholar 

  24. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: Surface elements as rendering primitives. In: SIGGRAPH ’00: ACM SIGGRAPH 2000 Papers, pp. 335–342. ACM, New York (2000)

    Google Scholar 

  25. Rappoport, A., Spitz, S.: Interactive boolean operations for conceptual design of 3d solids. In: SIGGRAPH ’97: ACM SIGGRAPH 1997 Papers, pp. 269–278. ACM, New York (1997)

    Google Scholar 

  26. Rossignac, J., Requicha, A.: Solid modeling. In: Encyclopedia of Electrical and Electronics Engineering (1999)

    Google Scholar 

  27. Shade, J., Gortler, S., He, L.-w., Szeliski, R.: Layered depth images. In: Proceedings of SIGGRAPH ’98, pp. 231–242. ACM, New York (1998)

    Chapter  Google Scholar 

  28. Toledo, S., Chen, D., Rotkin, V.: Taucs, a library of sparse linear solvers (version 2.2). In http://www.tau.ac.il/~stoledo/taucs/ (2003)

  29. Trapp, M., Döllner, J.: Real-time volumetric tests using layered depth images. In: Proceedings of EUROGRAPHICS ’08, pp. 235–238 (2008)

    Google Scholar 

  30. Wang, C.C.L.: Approximate boolean operations on large polyhedral solids with partial mesh reconstruction. IEEE Transactions on Visualization and Computer Graphics, Published Online (2010)

  31. Wang, C.C.L., Leung, Y.-S., Chen, Y.: Solid modeling of polyhedral objects by layered depth-normal images on the gpu. Comput. Aided Des. 42(6), 535–544 (2010)

    Article  Google Scholar 

  32. Zhou, K., Gong, M., Huang, X., Guo, B.: Data-parallel octrees for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 16(6) (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlie C. L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Wang, C.C.L., Chen, Y. et al. Parallel and efficient Boolean on polygonal solids. Vis Comput 27, 507–517 (2011). https://doi.org/10.1007/s00371-011-0571-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0571-1

Keywords

Navigation