Skip to main content
Log in

A hyper elasticity method for interactive virtual design of hearing aids

A parallel method for general non-linear hyper elasticity modeling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a computational efficient method for isotropic hyper elasticity based on functional analysis. By selecting a class of shape functions, we arrive at a computational scheme which yields very sparse tensors. This enables fast computations of the hyper elastic energy potential and its derivatives. We achieve efficiency and performance through the use of shape functions that are linear in their parameters and through rotation into the eigenspace of the right Cauchy–Green strain tensor. This makes near real time evaluation of hyper elasticity of complex meshes on CPU relatively easy to implement. The approach does not rely on a specific shape function or material model but offers a general framework for isotropic hyper elasticity. The method is aimed at interactive and accurate non-linear hyper elastic modeling for a wide range of industrial virtual design applications, which we exemplify by insertion of hearing aid domes into the ear canal. We validate the method for tetrahedral meshes with linear shape functions with an Ogden material model by comparing simulations to deformations of real material. We illustrate the use of other shape functions and models using uniform cubic B-splines in combination with Riemannian elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baerentzen, J.A., Aanaes, H.: Signed distance computation using the angle weighted pseudonormal. IEEE Trans. Vis. Comput. Graph. 11, 243–253 (2005)

    Article  Google Scholar 

  2. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM, New York (1998)

    Chapter  Google Scholar 

  3. Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 982–990 (2005)

    Article  Google Scholar 

  4. Bargteil, A.W., Wojtan, C., Hodgins, J.K., Turk, G.: A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26 (2007)

  5. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 1–12 (2008)

    Article  Google Scholar 

  6. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  7. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled prisms for intuitive surface modeling. In: Proceedings of the 4th Eurographics Symposium on Geometry Processing, SGP ’06, pp. 11–20. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  8. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 594–603. ACM, New York (2002)

    Chapter  Google Scholar 

  9. Choi, M.G., Ko, H.S.: Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graph. 11, 91–101 (2005)

    Article  Google Scholar 

  10. Darkner, S., Vester-Christensen, M., Larsen, R., Paulsen, R.R., Nielsen, C.: Automated 3D rigid registration of open 2D manifolds. In: Proceedings from Statistical Atlases to Personalized Models Workshop, MICCAI 2006, pp. 19–22 (2006)

    Google Scholar 

  11. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space & time adaptive sampling. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 31–36. ACM, New York (2001)

    Chapter  Google Scholar 

  12. Galoppo, N., Otaduy, M., Tekin, S., Gross, M., Lin, M.: Soft articulated characters with fast contact handling. Comput. Graph. Forum 26(3), 243–253 (2007)

    Article  Google Scholar 

  13. Galoppo, N., Otaduy, M.A., Moss, W., Sewall, J., Curtis, S., Lin, M.C.: Controlling deformable material with dynamic morph targets. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, pp. 39–47. ACM, New York (2009)

    Chapter  Google Scholar 

  14. Georgii, J., Westermann, R.: Corotated finite elements made fast and stable. In: Proceedings of the 5th Workshop on Virtual Reality Interaction and Physical Simulation, pp. 11–19 (2008)

    Google Scholar 

  15. Grinspun, E.: A discrete model of thin shells. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, pp. 14–19. ACM, New York (2006)

    Chapter  Google Scholar 

  16. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, pp. 131–140. Eurographics Association, Aire-la-Ville (2004)

    Chapter  Google Scholar 

  17. Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68, 66–89 (2006)

    Article  MATH  Google Scholar 

  18. Irving, G., Schroeder, C., Fedkiw, R.: Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26 (2007)

  19. Mauch, S.P.: Efficient algorithms for solving static Hamilton-Jacobi equations. Ph.D. thesis, Pasadena, CA, USA (2003). AAI3093495

  20. Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface 2004, GI’04, pp. 239–246. Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo (2004)

    Google Scholar 

  21. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Symposium on Computer Animation: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, vol. 21(22), pp. 49–54 (2002)

    Chapter  Google Scholar 

  22. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, pp. 141–151. Eurographics Association, Aire-la-Ville (2004)

    Chapter  Google Scholar 

  23. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24, 471–478 (2005)

    Article  Google Scholar 

  24. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18, 109–118 (2007)

    Article  Google Scholar 

  25. O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 137–146. ACM/Addison-Wesley, New York (1999)

    Chapter  Google Scholar 

  26. Ogden, R.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 326(1567), 565–584 (1972) (1934–1990)

    Article  MATH  Google Scholar 

  27. Pennec, X., Stefanescu, R., Arsigny, V., Fillard, P., Ayache, N.: Riemannian elasticity: a statistical regularization framework for non-linear registration. In: MICCAI, vol. 3750, p. 943 (2005)

    Google Scholar 

  28. Schmedding, R., Teschner, M.: Inversion handling for stable deformable modeling. Vis. Comput. 24, 625–633 (2008)

    Article  Google Scholar 

  29. Selle, A., Lentine, M., Fedkiw, R.: A mass spring model for hair simulation. ACM Trans. Graph. 27(3), 1–11 (2008)

    Article  Google Scholar 

  30. Si, H.: Tetgen: a quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. Opensource Proj. (2011)

  31. Sigg, C., Peikert, R., Gross, M.: Signed distance transform using graphics hardware. In: Proceedings of the 14th IEEE Visualization 2003, VIS ’03, p. 12. IEEE Computer Society, Washington (2003)

    Google Scholar 

  32. Teran, J., Blemker, S., Hing, V.N.T., Fedkiw, R.: Finite volume methods for the simulation of skeletal muscle. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, pp. 68–74. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  33. Teran, J., Sifakis, E., Irving, G., Fedkiw, R.: Robust quasistatic finite elements and flesh simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’05, pp. 181–190. ACM, New York (2005)

    Chapter  Google Scholar 

  34. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. SIGGRAPH Comput. Graph. 21, 205–214 (1987)

    Article  Google Scholar 

  35. Teschner, M., Heidelberger, B., Muller, M., Gross, M.: A versatile and robust model for geometrically complex deformable solids. In: CGI ’04: Proceedings of the Computer Graphics International, pp. 312–319. IEEE Computer Society, Washington (2004)

    Chapter  Google Scholar 

  36. Wicke, M., Ritchie, D., Klingner, B.M., Burke, S., Shewchuk, J.R., O’Brien, J.F.: Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1–49:11 (2010)

    Article  Google Scholar 

  37. Wright, J.N.S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  38. Zhu, Y., Sifakis, E., Teran, J., Brandt, A.: An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans. Graph. 29, 16:1–16:18 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sune Darkner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darkner, S., Erleben, K. A hyper elasticity method for interactive virtual design of hearing aids. Vis Comput 27, 645–653 (2011). https://doi.org/10.1007/s00371-011-0574-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0574-y

Keywords

Navigation