Skip to main content
Log in

Interactive deformable models with quadratic bases in Bernstein–Bézier-form

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a physically based interactive simulation technique for de formable objects. Our method models the geometry as well as the displacements using quadratic basis functions in Bernstein–Bézier form on a tetrahedral finite element mesh. The Bernstein–Bézier formulation yields significant advantages compared to approaches using the monomial form. The implementation is simplified, as spatial derivatives and integrals of the displacement field are obtained analytically avoiding the need for numerical evaluations of the elements’ stiffness matrices. We introduce a novel traversal accounting for adjacency in order to accelerate the reconstruction of the global matrices. We show that our proposed method can compensate the additional effort introduced by the co-rotational formulation to a large extent. We validate our approach on several models and demonstrate new levels of accuracy and performance in comparison to current state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe, K.-J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, New York (1982)

    Google Scholar 

  2. Baraff, D., Witkin, A.: Large steps in cloth simulation. Comput. Graph. 32, 43–54 (1998)

    Google Scholar 

  3. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for FEA. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  4. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org

  5. Etzmuss, O., Keckeisen, M., Strasser, W.: A fast finite element solution for cloth modelling. In: PG (2003)

    Google Scholar 

  6. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. MK Publishers Inc. (2002)

  7. Georgii, J., Westermann, R.: Corotated finite elements made fast and stable. In: VRIPHYS, pp. 11–19 (2008)

    Google Scholar 

  8. Hauth, M., Etzmuss, O., Strasser, W.: Analysis of numerical methods for the simulation of deformable models. Vis. Comput. 19(7–8), 581–600 (2003)

    Google Scholar 

  9. Hauth, M., Strasser, W.: Corotational simulation of deformable solids. In: WSCG, pp. 137–144 (2004)

    Google Scholar 

  10. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: SCA (2004)

    Google Scholar 

  11. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: SCA (2002)

    Google Scholar 

  12. Müller, M., Gross, M.: Interactive virtual materials. In: GI, pp. 239–246 (2004)

    Google Scholar 

  13. Mezger, J., Strasser, W.: Interactive soft object simulation with quadratic finite elements. In: AMDO (2006)

    Google Scholar 

  14. Mezger, J., Thomaszewski, B., Pabst, S., Strasser, W.: Interactive physically-based shape editing. In: SPM (2008)

    Google Scholar 

  15. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25(4), 809 (2006)

    Article  Google Scholar 

  16. Parker, E.G., O’Brien, J.F.: Real-time deformation and fracture in a game environment. In: SCA ’09 (2009)

    Google Scholar 

  17. Pena Serna, S., Silva, J., Stork, A., Marcos, A.: Neighboring-based linear system for dynamic meshes. In: VRIPHYS (2009)

    Google Scholar 

  18. Roth, S., Gross, M., Turello, S., Carls, F.: A Bernstein-Bézier based approach to soft tissue simulation. Comput. Graph. Forum 17(3), 285–294 (1998)

    Article  Google Scholar 

  19. Roth, S.: Bernstein–Bézier Representations for Facial Surgery Simulation. PhD thesis, ETHZ (2002)

  20. Schumaker, L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  21. Terzopoulos, D., Witkin, A.: Deformable models. IEEE Comput. Graph. Appl. 8(6), 41–51 (1988)

    Article  Google Scholar 

  22. Zienckiewicz, O.C., Taylor, R.L.: The Finite Element Method. Butterworth/Heinemann, Soneham (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, D., Kalbe, T., Stork, A. et al. Interactive deformable models with quadratic bases in Bernstein–Bézier-form. Vis Comput 27, 473–483 (2011). https://doi.org/10.1007/s00371-011-0579-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0579-6

Keywords

Navigation