Skip to main content
Log in

Joint reversible watermarking and progressive compression of 3D meshes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A new reversible 3D mesh watermarking scheme is proposed in conjunction with progressive compression. Progressive 3D mesh compression permits a progressive refinement of the model from a coarse to a fine representation by using different levels of detail (LoDs). A reversible watermark is embedded into all refinement levels such that (1) the refinement levels are copyright protected, and (2) an authorized user is able to reconstruct the original 3D model after watermark extraction, hence reversible. The progressive compression considers a connectivity-driven algorithm to choose the vertices that are to be refined for each LoD. The proposed watermarking algorithm modifies the geometry information of these vertices based on histogram bin shifting technique. An authorized user can extract the watermark in each LoD and recover the original 3D mesh, while an unauthorized user which has access to the decompression algorithm can only reconstruct a distorted version of the 3D model. Experimental results show that the proposed method is robust to several attack scenarios while maintaining a good compression ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alliez, P., Desbrun, M.: Progressive encoding for lossless transmission of 3D meshes. In: ACM SIGGRAPH, pp. 198–205 (2001)

    Google Scholar 

  2. Chen, H.K., Chen, Y.H.: Progressive watermarking on 3D meshes. In: 2010 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–7. IEEE, New York (2010)

    Chapter  Google Scholar 

  3. Cho, J., Prost, R., Jung, H.: An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Trans. Signal Process. 55(1), 142–155 (2006)

    Article  MathSciNet  Google Scholar 

  4. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

  5. Cohen-Or, D., Levin, D., Remez, O.: Progressive compression of arbitrary triangular meshes. In: Visualization, pp. 67–72 (1999)

    Google Scholar 

  6. De Vleeschouwer, C., Delaigle, J.F., Macq, B.: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans. Multimed. 5(1), 97–105 (2003)

    Article  Google Scholar 

  7. Gandoin, P.M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. In: ACM SIGGRAPH, pp. 372–379 (2002)

    Google Scholar 

  8. Goudia, D., Chaumont, M., Puech, W., Said, N.H.: A joint JPEG2000 compression and watermarking system using a TCQ-based quantization scheme. In: Visual Information Processing and Communication II (VIPC 2011), vol. 7882 (2011)

    Google Scholar 

  9. Hoppe, H.: Progressive mesh. In: ACM SIGGRAPH, vol. 96, pp. 99–108 (1996)

    Google Scholar 

  10. Konstantinides, J.M., Mademlis, A., Daras, P., Mitkas, P.A., Strintzis, M.G.: Blind robust 3D mesh watermarking based on oblate spheroidal harmonics. IEEE Trans. Multimed. 11(1), 23–38 (2009)

    Article  Google Scholar 

  11. Lee, H., Lavoué, G., Dupont, F.: Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression. In: Vision, Modeling, and Visualization Workshop, pp. 73–81 (2009)

    Google Scholar 

  12. Liu, Y., Prabhakaran, B., Guo, X.: A robust spectral approach for blind watermarking of manifold surfaces. In: Proceedings of the 10th ACM workshop on Multimedia and Security, pp. 43–52. ACM, New York (2008)

    Chapter  Google Scholar 

  13. Lu, Z., Li, Z.: High capacity reversible data hiding for 3D meshes in the PVQ domain. In: Proceedings of the 6th International Workshop on Digital Watermarking, pp. 233–243 (2008)

    Google Scholar 

  14. Ohbuchi, R., Masuda, H., Aono, M.: Watermarking three-dimensional polygonal meshes. In: ACM Multimedia, pp. 261–272 (1997)

    Google Scholar 

  15. Pajarola, R., Rossignac, J.: Compressed progressive meshes. IEEE Trans. Vis. Comput. Graph. 6, 79–93 (2000)

    Article  Google Scholar 

  16. Peng, J., Kim, C.S., Kuo, C.C.J.: Technologies for 3D mesh compression: a survey. J. Vis. Commun. Image Represent. 16(6), 688–733 (2005)

    Article  Google Scholar 

  17. Peng, J., Kuo, Y., Eckstein, I., Gopi, M.: Feature oriented progressive lossless mesh coding. Comput. Graph. Forum 29(7), 2029–2038 (2010)

    Article  Google Scholar 

  18. Praun, E., Hoppe, H., Finkelstein, A.: Robust mesh watermarking. In: ACM SIGGRAPH, pp. 49–56 (1999)

    Google Scholar 

  19. Taubin, G., Guéziec, A., Horn, W., Lazarus, F.: Progressive forest split compression. In: ACM SIGGRAPH, pp. 123–132 (1998)

    Google Scholar 

  20. Valette, S., Chaine, R., Prost, R.: Progressive lossless mesh compression via incremental parametric refinement. In: Proceedings of the Symposium on Geometry Processing, vol. 28, pp. 1301–1310 (2009)

    Google Scholar 

  21. Wang, K., Lavoue, G., Denis, F., Baskurt, A.: A comprehensive survey on three-dimensional mesh watermarking. IEEE Trans. Multimed. 10(8), 1513–1527 (2008)

    Article  Google Scholar 

  22. Wang, K., Lavoué, G., Denis, F., Baskurt, A.: Robust and blind mesh watermarking based on volume moments. Comput. Graph. 35(1), 1–19 (2011)

    Article  Google Scholar 

  23. Wang, Y., Hu, S.: A new watermarking method for 3d models based on integral invariants. IEEE Trans. Vis. Comput. Graph. 15(2), 1 (2009)

    Article  Google Scholar 

  24. Willems, F.M.J., Kalker, T.: Coding theorems for reversible embedding. In: Proc. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 66, pp. 61–76 (2003)

    Google Scholar 

  25. Wu, H., Dugelay, J.: Reversible watermarking of 3D mesh models by prediction-error expansion. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 797–802 (2008)

    Chapter  Google Scholar 

  26. Yang, E., Wu, G.: Joint compression and blind watermarking: a case study in the jpeg-compatible scenario. In: Proc. of the 43th Allerton Conference on Communications, Control, and Computing (2008)

    Google Scholar 

  27. Zafeiriou, S., Tefas, A., Pitas, I.: Blind robust watermarking schemes for copyright protection of 3D mesh objects. IEEE Trans. Vis. Comput. Graph. 11(5), 596–607 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Dikici, Ç., Lavoué, G. et al. Joint reversible watermarking and progressive compression of 3D meshes. Vis Comput 27, 781–792 (2011). https://doi.org/10.1007/s00371-011-0586-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0586-7

Keywords

Navigation