Skip to main content
Log in

Local shape blending using coherent weighted regions

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel local shape blending method that maps a sparse configuration of facial markers captured from an actor onto target models. The advantage of local shape blending methods is that, given a small set of key shapes for each local region, their combination can generate various facial expressions. However, they have the common problem that they use the pre-determined (fixed) regions and compute the combination of local key shapes for each region independently of each other. So, they have a risk of breaking natural correlations between the regions. We present a stochastic method of computing the regions and the blending weight vectors simultaneously. To do so, we formulate local shape blending as a problem of finding an optimal distribution of blending weight vectors of all control points in MAP–MRF framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, Z., Noh, J.: Computer Facial Animation: A Survey (2007)

    Google Scholar 

  2. Na, K., Jung, M.: Weighted local shape blending for facial motion retargetting. Comput. Animat. Virtual Worlds 21, 255–265 (2010)

    Google Scholar 

  3. Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., Gross, M.: Multi-scale capture of facial geometry and motion. ACM Trans. Graph. 26, 33 (2007)

    Article  Google Scholar 

  4. Bickel, B., Lang, M., Botsch, M., Otaduy, M., Gross, M.: Pose-space animation and transfer of facial details. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2008)

    Google Scholar 

  5. Blanz, V., Basso, C., Poggio, T., Vetter, T.: Multi-scale capture of facial geometry and motion. Comput. Graph. Forum 22, 641–650 (2003)

    Article  Google Scholar 

  6. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH 1999, pp. 187–194 (1999)

    Chapter  Google Scholar 

  7. S Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MATH  Google Scholar 

  8. Buck, I., Finkelstein, A., Jacobs, C., Klein, A., Salesin, D.H., Seims, J., Szeliski, R., Toyama, K.: Performance-driven hand-drawn animation. In: NPAR 2000, pp. 101–108 (2000)

    Chapter  Google Scholar 

  9. Cao, Y., Faloutsos, P., Pighin, F.: Unsupervised learning for speech motion editing. In: SCA 2003, pp. 225–231 (2003)

    Google Scholar 

  10. Choe, B., Lee, H., Ko, H.: Performance-driven muscle-based facial animation. J. Vis. Comput. Animat. 12, 67–79 (2001)

    Article  MATH  Google Scholar 

  11. Choe, B., Ko, H.S.: Analysis and synthesis of facial expressions with hand-generated muscle actuation basis. In: IEEE Computer Animation Conference, pp. 12–19 (2001)

    Google Scholar 

  12. Chuang, E., Bregler, C.: Performance Driven Facial Animation Using Blendshape Interpolation (2002)

  13. Chuang, E., Bregler, C.: Mood swings: expressive speech animation. ACM Trans. Graph. 24, 331–347 (2005)

    Article  Google Scholar 

  14. Essa, I., Basu, S., Darrell, T., Pentland, A.: Modeling, tracking and interactive animation of faces and heads using input from video. In: CA’96: Proceedings of the Computer Animation, p. 68 (1996)

    Chapter  Google Scholar 

  15. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 721–741 (1984)

  16. Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F.: Making faces. In: SIGGRAPH 1998, pp. 55–66 (1998)

    Chapter  Google Scholar 

  17. Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: SCA 2003, pp. 62–67 (2003)

    Google Scholar 

  18. Na, K., Jung, M.: Hierarchical retargetting of fine facial motions. Comput. Graph. Forum 23, 687–695 (2004)

    Article  Google Scholar 

  19. Joshi, P., Tien, W.C., Desbrun, M., Pighin, F.: Learning controls for blend shape based realistic facial animation. In: SCA 2003, pp. 187–192 (2003)

    Google Scholar 

  20. Ju, E., Lee, J.: Expressive facial gestures from motion capture data. Comput. Graph. Forum 27, 381–388 (2008)

    Article  Google Scholar 

  21. Lee, Y., Terzopoulos, D., Walters, K.: Realistic modeling for facial animation. In: SIGGRAPH 1995, pp. 55–62 (1995)

    Chapter  Google Scholar 

  22. Lewis, J.P., Mooser, J., Deng, Z., Neumann, U.: Reducing blendshape interference by selected motion attenuation. In: I3D’05: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 25–29 (2005)

    Chapter  Google Scholar 

  23. Li, S.: Markov Random Field Modeling in Computer Vision, 2nd edn. Springer, Berlin (2001)

    Google Scholar 

  24. Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., Debevec, P.: Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Trans. Graph. 27, 121:1–121:10 (2008)

    Article  Google Scholar 

  25. Noh, J., Neumann, U.: Expression cloning. In: SIGGRAPH 2001, vols. 277–288 (2001)

    Google Scholar 

  26. Parke, F.I.: Computer generated animation of faces. In: ACM’72: Proceedings of the ACM Annual Conference, pp. 451–457 (1972)

    Chapter  Google Scholar 

  27. Pighin, F., Lewis, J.P.: Facial motion retargetting. In: SIGGRAPH’06: ACM SIGGRAPH 2006 Courses, p. 2 (2006)

    Chapter  Google Scholar 

  28. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.H.: Synthesizing realistic facial expressions from photographs. In: SIGGRAPH 1998, pp. 75–84 (1998)

    Chapter  Google Scholar 

  29. Pighin, F., Szeliski, R., Salesin, D.H.: Resynthesizing facial animation through 3d model-based tracking. In: ICCV, pp. 143–150 (1999)

    Google Scholar 

  30. Pyun, H., Kim, Y., Chae, W., Kang, H.W., Shin, S.Y.: An example-based approach for facial expression cloning. In: SCA 2003, pp. 167–176 (2003)

    Google Scholar 

  31. Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 417–425 (2005)

    Article  Google Scholar 

  32. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian surface editing. In: SGP’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184 (2004)

    Chapter  Google Scholar 

  33. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: SIGGRAPH 2004, pp. 399–405 (2004)

    Chapter  Google Scholar 

  34. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact, approximate geodesics on meshes. ACM Trans. Graph. 24, 553–560 (2005)

    Article  Google Scholar 

  35. Vlasic, D., Brand, M., Pfister, H., Popović, J.: Face transfer with multilinear models. ACM Trans. Graph. 24, 426–433 (2005)

    Article  Google Scholar 

  36. Wang, Y., Huang, X., Lee, C., Zhang, S., Li, Z., Samaras, D., Metaxas, D., Elgammal, A., Huang, P.: High resolution acquisition, learning and transfer of dynamic 3-D facial expressions. In: CG Forum, pp. 677–686 (2004)

    Google Scholar 

  37. Williams, L.: Performance-driven facial animation. In: SIGGRAPH 1990, pp. 235–242 (1990)

    Chapter  Google Scholar 

  38. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High resolution capture for modeling and animation. ACM Trans. Graph. 23, 548–558 (2004)

    Article  Google Scholar 

  39. Zhang, Q., Liu, Z., Guo, B., Terzopoulos, D., Shum, H.: Geometry-driven photorealistic facial expression synthesis. IEEE Trans. Vis. Comput. Graph. 12, 48–60 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Ryul Jung.

Additional information

This work was supported by the Sogang University Research Grant of 2010.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 13.2 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, KG., Jung, MR. Local shape blending using coherent weighted regions. Vis Comput 27, 575–584 (2011). https://doi.org/10.1007/s00371-011-0591-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0591-x

Keywords

Navigation