Abstract
A new algorithmic framework is proposed to efficiently recognize instances of template shapes within target 3D models or scenes. The new framework provides an efficient solution of the part-in-whole matching problem and, with simple adaptations, it can also be exploited to quickly select sites in the target which properly fit with the template. Therefore, the method proposed potentially offers a new approach to all applications where complementarity has to be analysed quickly such as, for instance, docking. By assuming that the template is small when compared to the target, the proposed approach distinguishes from the previous literature because the part-in-whole matching is obtained by extracting offline only the shape descriptor of the template, while the description of the target is dynamically and adaptively extracted during the matching process. This novel framework, called the Fast Reject schema, exploits the incremental nature of a class of local shape descriptors to significantly reduce the part-in-whole matching time, without any expensive processing of the models for the extraction of the shape descriptors. The schema has been tested on three different descriptors and results are discussed in detail. Experiments show that the gain in computational performances does not compromise the accuracy of the matching results. An additional descriptor is introduced to compute parts of the target having a complementary shape with respect to the template. Results of such a shape complementarity detection are shown in domains such as cultural heritage and drug design.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)
Atilgan, E., Hu, J.: Efficient protein–ligand docking using sustainable evolutionary algorithm. In: Proceeding of the 10th International Conference on Hybrid Intelligence, pp. 113–118 (2010)
Attene, M., Falcidieno, B.: Remesh: An interactive environment to edit and repair triangle meshes. In: Shape Modeling and Applications, pp. 271–276 (2006)
Attene, M., Marini, S., Spagnuolo, M., Falcidieno, B.: The Fast Reject schema for part-in-whole 3D shape matching. In: Proceedings of the Eurographics Workshop on 3D Objects Retrieval (3DOR 2010), pp. 23–30 (2010)
Attene, M., Robbiano, F., Spagnuolo, M., Falcidieno, B.: Characterization of 3D shape parts for semantic annotation. Comput. Aided Des. 41(10), 756–763 (2009)
Bajaj, C., Chowdhury, R., Siddavanahalli, V.: f 2 dock: Fast Fourier protein–protein docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 45–58 (2011). http://doi.ieeecomputersociety.org/10.1109/TCBB.2009.57
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 509–522 (2002)
Bespalov, D., Shokoufandeh, A., Regli, W.C., Sun, W.: Scale-space representation of 3D models and topological matching. In: Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, pp. 208–215. ACM, New York (2003)
Bian, X., Wang, X., Zhang, W., Yan, Z.: Design of a visual guiding system for IAUV docking. In: International Conference on Mechatronics and Automation, p. 2107 (2009)
Biasotti, S., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Marini, S., Patané, G., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 12:1–87 (2008)
Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Comput. Aided Des. 38(9), 1002–1019 (2006)
Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84(2), 163–183 (2009). doi:10.1007/s11263-008-0147-3
Bronstein, A.M., Bronstein, M.M., Carmon, Y., Kimmel, R.: Partial similarity of shapes using a statistical significance measure. IPSJ Trans. Comput. Vis. Appl. 1, 105–114 (2009)
Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranić, D.V.: Feature-based similarity search in 3D object databases. ACM Comput. Surv. 37(4), 345–387 (2005). http://doi.acm.org/10.1145/1118890.1118893
Christiansen, S., Nilson, T.: Docking system for autonomous, un-manned docking operations. In: Aerospace Conference, p. 1 (2008)
Cohen, F., Zhang, Z., Jeppson, P.: Virtual reconstruction of archaeological vessels using convex hulls of surface markings. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 55–61 (2010)
Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S.J., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. In: SMI’05 Proceedings, pp. 368–373. IEEE Comput. Soc., Los Alamitos (2005)
Corney, J., Rea, H., Clark, D., Pritchard, J., Breaks, M., MacLeod, R.: Coarse filters for shape matching. IEEE Comput. Graph. Appl. 22(3), 65–74 (2002)
Dong, Z., Chen, W., Bao, H., Zhang, H., Peng, Q.: Real-time voxelization for complex polygonal models. In: PG’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, pp. 43–50. IEEE Comput. Soc., Washington (2004)
Elad, M., Tal, A., Ar, S.: Content based retrieval of VRML objects: an iterative and interactive approach. In: Proceedings of the Sixth Eurographics Workshop on Multimedia 2001, pp. 107–118. Springer, New York (2002)
Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (2002)
Ferreira, A., Marini, S., Attene, M., Fonseca, M.J., Spagnuolo, M., Jorge, J.A., Falcidieno, B.: Thesaurus-based 3D object retrieval with part-in-whole matching. Int. J. Comput. Vis. 89, 327–347 (2010). doi:10.1007/s11263-009-0257-6
Fleuret, F., Geman, D.: Coarse-to-fine face detection. Int. J. Comput. Vis. 41, 85–107 (2001)
Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83–101 (2003)
Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)
Golovinskiy, A., Kim, V., Funkhouser, T.: Shape-based recognition of 3D point clouds in urban environments. In: International Conference on Computer Vision (ICCV) (2009)
Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (2006). http://doi.acm.org/10.1145/1141911.1141925
Igwe, P.C., Knopf, G.K.: 3D object reconstruction using geometric computing. In: Proceedings of the Conference on Geometric Modeling and Imaging: New Trends, pp. 9–14. IEEE Comput. Soc., Washington (2006). doi:10.1109/GMAI.2006.1. http://portal.acm.org/citation.cfm?id=1155446.1156019
Johnson, A.E., Hebert, M.: Recognizing objects by matching oriented points. In: CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR’97), p. 684. IEEE Comput. Soc., Los Alamitos (1997)
Kazhdan, M.: Shape representation and algorithms for 3D model retrieval. Ph.D. Thesis, Princeton University (2004)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) Proceedings of Symposium in Geometry Processing, Aachen, pp. 156–165 (2003)
Liu, Y., Li, W., Wang, Y., Lv, M.: An efficient approach for flexible docking base on particle swarm optimization. In: 2nd International Conference on Biomedical Engineering and Informatics, BMEI’09, pp. 1–7 (2009)
Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1), 227–248 (2003)
Papaioannou, G., Karabassi, E.A.: On the automatic assemblage of arbitrary broken solid artefacts. Image Vis. Comput. 21(5), 401–412 (2003)
Papaioannou, G., Karabassi, E.A., Theoharis, T.: Reconstruction of three-dimensional objects through matching of their parts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 114–124 (2002)
Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm for recognizing 3-D object shapes from range data. In: ICCV’03: Proceedings of the Ninth IEEE International Conference on Computer Vision, p. 1126. IEEE Comput. Soc., Washington (2003)
Shilane, P., Funkhouser, T.: Distinctive regions of 3D surfaces. ACM Trans. Graph. 26(2), 7 (2007). http://doi.acm.org/10.1145/1243980.1243981
Suzuki, M.T., Yaginuma, Y., Shimizu, Y.: A partial shape matching technique for 3D model retrieval systems. In: ACM SIGGRAPH 2005 Posters, p. 128. ACM, New York (2005)
Suzuki, M.T., Yaginuma, Y., Yamada, T., Shimizu, Y.: A partial shape matching method for 3D model databases. In: Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA2005), pp. 389–394. Acta Press, Phoenix (2005)
Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39, 441–471 (2008). doi:10.1007/s11042-007-0181-0. http://portal.acm.org/citation.cfm?id=1395016.1395041
Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3D shape retrieval by reeb pattern unfolding. Comput. Graph. Forum 28, 41–55 (2009)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Attene, M., Marini, S., Spagnuolo, M. et al. Part-in-whole 3D shape matching and docking. Vis Comput 27, 991–1004 (2011). https://doi.org/10.1007/s00371-011-0622-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0622-7