Skip to main content
Log in

Fast optimization-based elasticity parameter estimation using reduced models

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Elasticity parameters are central to physically-based animation and medical image analysis. We present an accelerated method to automatically estimate these parameters for a deformation simulator using an iterative optimization framework, given the desired (target) output surface/shape. During the optimization, the input model is deformed by the simulator, and the distance between the deformed surface and the target surface is minimized numerically. To accelerate the optimization process, we introduce a dimension reduction technique to allow a trade-off between the computational efficiency and desired accuracy. The reduced model is constructed using statistical training with a set of example deformations. To demonstrate this approach, we apply the computational framework to 2D animations of elastic bodies simulated with a linear finite element method. We also present a 3D elastography example, which is simulated with a reduced-dimension finite element model to improve the performance of the optimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object-oriented numerical software libraries. In: Modern Software Tools Scientific Computing, pp. 163–202 (1997)

    Chapter  Google Scholar 

  2. Balocco, S., Camara, O., Frangi, A.F.: Towards regional elastography of intracranial aneurysms. In: Medical Image Computing and Computer-Assisted Intervention, vol. 11, pp. 131–138 (2008)

    Google Scholar 

  3. Barbič, J., da Silva, M., Popović, J.: Deformable object animation using reduced optimal control. ACM Trans. Graph. 28(3), 1 (2009). Proceedings of ACM SIGGRAPH 2009

    Article  Google Scholar 

  4. Becker, M., Teschner, M.: Robust and efficient estimation of elasticity parameters using the linear finite element method. In: Proc. of Simulation and Visualization, pp. 15–28 (2007)

    Google Scholar 

  5. Bergou, M., Mathur, S., Wardetzky, M., Grinspun, E.: TRACKS: toward directable thin shells. In: ACM SIGGRAPH 2007 Papers, p. 50 (2007)

    Chapter  Google Scholar 

  6. Bhat, K.S., Twigg, C.D., Hodgins, J.K., Khosla, P.K., Popovic, Z., Seitz, S.M.: Estimating cloth simulation parameters from video. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 37–51 (2003)

    Google Scholar 

  7. Bickel, B., Bächer, M., Otaduy, M.A., Lee, H.R., Pfister, H., Gross, M., Matusik, W.: Design and fabrication of materials with desired deformation behavior. In: ACM SIGGRAPH 2010 Papers, pp. 1–10 (2010)

    Chapter  Google Scholar 

  8. Bickel, B., Bächer, M., Otaduy, M.A., Matusik, W., Pfister, H., Gross, M.: Capture and modeling of non-linear heterogeneous soft tissue. In: ACM SIGGRAPH 2009 Papers, pp. 1–9 (2009)

    Chapter  Google Scholar 

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  10. Fu, D., Levinson, S., Gracewski, S., Parker, K.: Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach. Phys. Med. Biol. 45(6), 1495–1510 (2000)

    Article  Google Scholar 

  11. Hensel, J.M., Menard, C., Chung, P.W.M., Milosevic, M.F., Kirilova, A., Moseley, J.L., Haider, M.A., Brock, K.K.: Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning. Int. J. Radiat. Oncol. Biol. Phys. 68(5), 1522–1528 (2007)

    Article  Google Scholar 

  12. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)

    Article  Google Scholar 

  13. Kallel, F., Bertrand, M.: Tissue elasticity reconstruction using linear perturbation method. IEEE Trans. Med. Imaging 15(3), 299–313 (1996)

    Article  Google Scholar 

  14. Kaus, M.R., Brock, K.K., Pekar, V., Dawson, L.A., Nichol, A.M., Jaffray, D.A.: Assessment of a model-based deformable image registration approach for radiation therapy planning. Int. J. Radiat. Oncol. Biol. Phys. 68(2), 572–580 (2007)

    Article  Google Scholar 

  15. Krysl, P., Lall, S., Marsden, J.E.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Methods Eng. 51(4), 479–504 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, H., Foskey, M., Niethammer, M., Lin, M.: Physically-based deformable image registration with material property and boundary condition estimation. In: Proceedings of the 2010 IEEE International Conference on Biomedical Imaging: from Nano to Macro, pp. 532–535 (2010)

    Chapter  Google Scholar 

  17. Martin, S., Thomaszewski, B., Grinspun, E., Gross, M.: Example-based elastic materials. In: Proceedings of SIGGRAPH 2011, vol. 30, pp. 72:1–72:8 (2011)

    Google Scholar 

  18. McNamara, A., Treuille, A., Popović, Z., Stam, J.: Fluid control using the adjoint method. ACM Trans. Graph. 23(3), 449–456 (2004)

    Article  Google Scholar 

  19. Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface 2004, GI’04, pp. 239–246 (2004)

    Google Scholar 

  20. Muthupillai, R., Ehman, R.L.: Magnetic resonance elastography. Nat. Med. 2(5), 601–603 (1996)

    Article  Google Scholar 

  21. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 809–836 (2006)

    Article  Google Scholar 

  22. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  23. Ophir, J., Alam, S., Garra, B., Kallel, F., Konofagou, E., Krouskop, T., Varghese, T.: Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc. Inst. Mech. Eng., H J. Eng. Med. 213(3), 203–233 (1999)

    Article  Google Scholar 

  24. Pai, D.K., Doel, K.v.d., James, D.L., Lang, J., Lloyd, J.E., Richmond, J.L., Yau, S.H.: Scanning physical interaction behavior of 3D objects. In: Proceedings of SIGGRAPH 2001, SIGGRAPH ’01, pp. 87–96 (2001).

    Google Scholar 

  25. Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable M-Reps for 3D medical image segmentation. Int. J. Comput. Vis. 55(2–3), 85–106 (2003)

    Article  Google Scholar 

  26. Press, W.H.: Numerical Recipes. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  27. Rivaz, H., Boctor, E., Foroughi, P., Zellars, R., Fichtinger, G., Hager, G.: Ultrasound elastography: a dynamic programming approach. IEEE Trans. Med. Imaging 27(10), 1373–1377 (2008)

    Article  Google Scholar 

  28. Schnur, D.S., Zabaras, N.: An inverse method for determining elastic material properties and a material interface. Int. J. Numer. Methods Eng. 33(10), 2039–2057 (1992)

    Article  MATH  Google Scholar 

  29. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Applied Computational Geometry Towards Geometric Engineering, vol. 1148, pp. 203–222. Springer, Berlin (1996)

    Chapter  Google Scholar 

  30. Si, H.: TetGen: a quality tetrahedral mesh generator and three-dimensional Delaunay triangulator (2009). URL http://tetgen.berlios.de/

  31. Skovoroda, A., Emelianov, S.: Tissue elasticity reconstruction based on ultrasonic displacement and strain images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(4), 141 (1995)

    Article  Google Scholar 

  32. Syllebranque, C., Boivin, S.: Estimation of mechanical parameters of deformable solids from videos. Vis. Comput. 24(11), 963–972 (2008)

    Article  Google Scholar 

  33. Taylor, Z.A., Crozier, S., Ourselin, S.: Real-time surgical simulation using reduced order finite element analysis. Med. Image Comput. Comput. Assist. Interv. 13(Pt 2), 388–395 (2010)

    Google Scholar 

  34. Teschner, M., Heidelberger, B., Manocha, D., Govindaraju, N., Zachmann, G., Kimmerle, S., Mezger, J., Fuhrmann, A.: Collision handling in dynamic simulation environments: the evolution of graphics: where to nex? In: Eurographics 2005 Tutorial (2005)

    Google Scholar 

  35. Treuille, A., McNamara, A., Popović, Z., Stam, J.: Keyframe control of smoke simulations. In: ACM SIGGRAPH 2003 Papers, pp. 716–723 (2003)

    Chapter  Google Scholar 

  36. Washington, C.W., Miga, M.I.: Modality independent elastography (MIE): a new approach to elasticity imaging. IEEE Trans. Med. Image 23(9), 1117–1128 (2004)

    Article  Google Scholar 

  37. Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9–11), 653–660 (2006)

    Article  Google Scholar 

  38. Yang, W., Feng, J., Jin, X.: Shape deformation with tunable stiffness. Vis. Comput. 24(7–9), 495–503 (2008)

    Article  Google Scholar 

  39. Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., Metaxas, D., Whitaker, R.: Engineering and algorithm design for an image processing API: a technical report on ITK—the insight toolkit (2002)

  40. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  41. Zhu, Y., Hall, T., Jiang, J.: A finite-element approach for Young’s modulus reconstruction. IEEE Trans. Med. Imaging 22(7), 890–901 (2003)

    Article  Google Scholar 

  42. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 6th edn. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Mark Foskey, Marc Niethammer, Ron Alterovitz, and Ed Chaney for helpful discussions. We also thank Zijie Xu and Dr. Ron Chen for providing prostate patient CT data. This work was partially supported by Army Research Office, National Science Foundation, and Carolina Development Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Ping Lee.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 387 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HP., Lin, M.C. Fast optimization-based elasticity parameter estimation using reduced models. Vis Comput 28, 553–562 (2012). https://doi.org/10.1007/s00371-012-0686-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0686-z

Keywords

Navigation