Skip to main content
Log in

Controllable C1 continuous blending of time-dependent parametric surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes the concept of blending time-dependent varying surfaces, and develops a new method to create a controllable C1 continuous blending surface between primary parametric surfaces whose position and shape change with time. We treat it as a boundary-valued problem defined by the mathematical model of a vectored dynamic fourth-order partial differential equation subjected to time-dependent C1 continuous blending boundary constraints. High performance blending surface generation is achieved through the development of an approximate analytical solution of the mathematical model. We investigate the accuracy and efficiency of the solution, study the effective shape control of the blending surfaces, and apply the obtained solution to tackle surface blending problems. The applications demonstrate that our proposed approach is very effective and efficient in dealing with controllable C1 continuous surface blending between time-dependent varying parametric surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vida, J., Martin, R.R., Varady, T.: A survey of blending methods that use parametric surfaces. Comput. Aided Des. 26(5), 341–365 (1994)

    Article  MATH  Google Scholar 

  2. Rossignac, J.R., Requicha, A.A.G.: Constant-radius blending in solid modeling. CIME, Comput. Mech. Eng. 3(1), 65–73 (1984)

    Google Scholar 

  3. Choi, B.K., Ju, S.Y.: Constant-radius blending in surface modeling. Comput. Aided Des. 21(4), 213–220 (1989)

    Article  MATH  Google Scholar 

  4. Sanglikar, M.A., Koparkar, P., Joshi, V.N.: Modelling rolling ball blends for computer aided geometric design. Comput. Aided Geom. Des. 7, 399–414 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnhill, R.E., Farin, G.E., Chen, Q.: Constant-radius blending of parametric surfaces. Computing, Suppl. 8, 1–20 (1993)

    Article  MathSciNet  Google Scholar 

  6. Chuang, J.-H., Lin, C.-H., Hwang, W.-C.: Variable-radius blending of parametric surfaces. Vis. Comput. 11, 513–525 (1995)

    Article  Google Scholar 

  7. Farouki, R.A.M., Sverrisson, R.: Approximation of rolling-ball blends for free-form parametric surfaces. Comput. Aided Des. 28(11), 871–878 (1996)

    Article  Google Scholar 

  8. Chuang, J.H., Hwang, W.C.: Variable-radius blending by constrained spine generation. Vis. Comput. 13, 316–329 (1997)

    Article  MATH  Google Scholar 

  9. Chuang, J.-H., Lien, P.-L.: One and two-parameter blending for parametric surfaces. J. Inf. Sci. Eng. 14, 461–477 (1998)

    Google Scholar 

  10. Lukács, G.: Differential geometry of G1 variable-radius rolling ball blend surfaces. Comput. Aided Geom. Des. 15, 585–613 (1998)

    Article  MATH  Google Scholar 

  11. Kós, G., Martin, R.R., Vrady, T.: Methods to recover constant-radius rolling ball blends in reverse engineering. Comput. Aided Geom. Des. 17, 127–160 (2000)

    Article  Google Scholar 

  12. Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using partial differential equations. Comput. Aided Des. 21(3), 165–171 (1989)

    Article  MATH  Google Scholar 

  13. Cheng, S.Y., Bloor, M.I.G., Saia, A., Wilson, M.J.: Blending between quadric surfaces using partial differential equations. In: Ravani, B. (ed.) Advances in Design Automation, Vol. 1, Computer and Computational Design, pp. 257–263. New York, ASME (1990)

    Google Scholar 

  14. Bloor, M.I.G., Wilson, M.J.: Representing PDE surfaces in terms of B-splines. Comput. Aided Des. 22(6), 324–331 (1990)

    Article  MATH  Google Scholar 

  15. Bloor, M.I.G., Wilson, M.J.: Using partial differential equations to generate free-form surfaces. Comput. Aided Des. 22(4), 202–212 (1990)

    Article  MATH  Google Scholar 

  16. Bloor, M.I.G., Wilson, M.J.: Spectral approximations to PDE surfaces. Comput. Aided Des. 28(2), 145–152 (1996)

    Article  Google Scholar 

  17. Bloor, M.I.G., Wilson, M.J.: Generating blend surfaces using a perturbation method. Math. Comput. Model. 31(1), 1–13 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brown, J.M., Bloor, M.I.G., Bloor, M.S., Wilson, M.J.: The accuracy of B-spline finite element approximations to PDE surfaces. Comput. Methods Appl. Mech. Eng. 158(3–4), 221–234 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Z.C.: Boundary penalty finite element methods for blending surfaces. I. Basic theory. J. Comput. Math. 16, 457–480 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Li, Z.C.: Boundary penalty finite element methods for blending surfaces. II. Biharmonic equations. J. Comput. Appl. Math. 110, 155–176 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Z.C., Chang, C.-S.: Boundary penalty finite element methods for blending surfaces. III. Superconvergence and stability and examples. J. Comput. Appl. Math. 110, 241–270 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. You, L.H., Zhang, J.J., Comninos, P.: Blending surface generation using a fast and accurate analytical solution of a fourth order PDE with three shape control parameters. Vis. Comput. 20, 199–214 (2004)

    Article  Google Scholar 

  23. You, L.H., Comninos, P., Zhang, J.J.: PDE blending surfaces with C2 continuity. Comput. Graph. 28(6), 895–906 (2004)

    Article  Google Scholar 

  24. Ugail, H., Bloor, M.I.G., Wilson, M.J.: Techniques for interactive design using the PDE method. ACM Trans. Graph. 18(2), 195–212 (1999)

    Article  Google Scholar 

  25. Zhang, J.J., You, L.H.: Fast surface modeling using a 6th order PDE. Comput. Graph. Forum 23(3), 311–320 (2004)

    Article  Google Scholar 

  26. Gonzalez, C.G., Athanasopoulos, M., Ugail, H.: Cyclic animation using partial differential equations. Vis. Comput. 26(5), 325–338 (2010)

    Article  Google Scholar 

  27. Sheng, Y., Sourin, S., Gonzalez, C.G., Ugail, H.: A PDE method for patchwise approximation of large polygon meshes. Vis. Comput. 26(6–8), 975–984 (2010)

    Article  Google Scholar 

  28. You, L.H., Chang, J., Yang, X., Zhang, J.J.: Solid modeling based on sixth order partial differential equations. Comput. Aided Des. 43(6), 720–729 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the grant of UK Royal Society International Joint Projects/NSFC 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, L.H., Ugail, H. & Zhang, J.J. Controllable C1 continuous blending of time-dependent parametric surfaces. Vis Comput 28, 573–583 (2012). https://doi.org/10.1007/s00371-012-0693-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0693-0

Keywords

Navigation