Skip to main content
Log in

Unified spray, foam and air bubbles for particle-based fluids

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a new model for diffuse material, i.e. water–air mixtures, that can be combined with particle-based fluids. Diffuse material is uniformly represented with particles which are classified into spray, foam and air bubbles. Physically motivated rules are employed to generate, advect and dissipate diffuse material. The approach is realized as a post-processing step which enables efficient processing and versatile handling. As interparticle forces and the influence of diffuse material onto the fluid are neglected, large numbers of diffuse particles are efficiently processed to realize highly detailed small-scale effects. The presented results show that our approach can significantly improve the visual realism of large-scale fluid simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, B., Lenaerts, T., Dutre, P.: Particle splatting: interactive rendering of particle-based simulation data. Tech. rep. CW 453, Katholieke Uni, Leuven (2006)

  2. Bagar, F., Scherzer, D., Wimmer, M.: A layered particle-based fluid model for real-time rendering of water. Comput. Graph. Forum, Proceedings EGSR 2010 29(4), 1383–1389 (2010)

    Article  Google Scholar 

  3. Bredow, R., Schaub, D., Kramer, D., Hausman, M., Dimian, D., Duguid, R.S.: Surf’s up: the making of an animated documentary. In: SIGGRAPH 2007 Courses, pp. 1–123 (2007)

    Google Scholar 

  4. Chentanez, N., Müller, M.: Real-time simulation of large bodies of water with small scale details. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 197–206 (2010)

    Google Scholar 

  5. Chentanez, N., Müller, M.: Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30, 82:1–82:10 (2011)

    Article  Google Scholar 

  6. Fangmeier, S., Anderson, J., Zargarpour, H., Smythe, D., Alexander, T.: Industrial light + magic: the making of the perfect storm. In: SIGGRAPH Panel (2000)

    Google Scholar 

  7. Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proc. SIGGRAPH 2001, pp. 23–30 (2001)

    Chapter  Google Scholar 

  8. Geiger, W., Leo, M., Rasmussen, N., Losasso, F., Fedkiw, R.: So real it’ll make you wet. In: SIGGRAPH 2006 Sketches (2006)

    Google Scholar 

  9. Greenwood, S.T., House, D.H.: Better with bubbles: enhancing the visual realism of simulated fluid. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 287–296 (2004)

    Chapter  Google Scholar 

  10. Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 973–981 (2005)

    Article  Google Scholar 

  11. Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. ACM Trans. Graph. 27, 48:1–48:4 (2008)

    Article  Google Scholar 

  12. Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH implementation on multi-core CPUs. Comput. Graph. Forum 30(1), 99–112 (2011)

    Article  Google Scholar 

  13. Ihmsen, M., Akinci, N., Gissler, M., Teschner, M.: Boundary handling and adaptive time-stepping for PCISPH. In: Proc. VRIPHYS, pp. 79–88 (2010)

    Google Scholar 

  14. Ihmsen, M., Bader, J., Akinci, G., Teschner, M.: Animation of air bubbles with SPH. In: Computer Graphics Theory and Applications GRAPP, pp. 225–234 (2011)

    Google Scholar 

  15. Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25, 805–811 (2005)

    Article  Google Scholar 

  16. Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 335–344 (2006)

    Google Scholar 

  17. Klingner, B., Feldman, B., Chentanez, N., O’Brien, J.: Fluid animation with dynamic meshes. ACM Trans. Graph. 25(3), 820–825 (2006)

    Article  Google Scholar 

  18. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 457–462 (2004)

    Article  Google Scholar 

  19. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  20. Mihalef, V., Metaxas, D., Sussman, M.: Textured liquids based on the marker level set. Comput. Graph. Forum 26, 457–466 (2007)

    Article  Google Scholar 

  21. Mihalef, V., Metaxas, D.N., Sussman, M.: Simulation of two-phase flow with sub-scale droplet and bubble effects. Comput. Graph. Forum 28(2), 229–238 (2009)

    Article  Google Scholar 

  22. Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  23. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)

    Google Scholar 

  24. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005)

    Chapter  Google Scholar 

  25. Next Limit Technologies: Realflow 2012, Hybrido. White Paper (2011)

  26. Raveendran, K., Wojtan, C., Turk, G.: Hybrid smoothed particle hydrodynamics. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33–42 (2011)

    Google Scholar 

  27. Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  28. Solenthaler, B., Gross, M.: Two-scale particle simulation. ACM Trans. Graph. 30(4), 72:1–72:8 (2011)

    Article  Google Scholar 

  29. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 40:1–40:6 (2009)

    Article  Google Scholar 

  30. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. Comput. Graph. Forum 22(3), 391–400 (2003)

    Article  Google Scholar 

  31. Thürey, N., Müller-Fischer, M., Schirm, S., Gross, M.: Real-time breaking waves for shallow water simulations. In: Proc. of the Pacific Conference on Computer Graphics and Applications, pp. 39–46 (2007)

    Google Scholar 

  32. Thürey, N., Rüde, U., Stamminger, M.: Animation of open water phenomena with coupled shallow water and free surface simulations. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 157–164 (2006)

    Google Scholar 

  33. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24, 965–972 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the German Research Foundation (DFG) under contract numbers SFB/TR-8 and TE 632/1-1. We also thank NVIDIA ARC GmbH for supporting this work. We are very grateful to Philipp Vath for his valuable ideas and his contribution to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Ihmsen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 17.8 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihmsen, M., Akinci, N., Akinci, G. et al. Unified spray, foam and air bubbles for particle-based fluids. Vis Comput 28, 669–677 (2012). https://doi.org/10.1007/s00371-012-0697-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0697-9

Keywords

Navigation