Abstract
Parallel coordinates plot (PCP) is an excellent tool for multivariate visualization and analysis, but it may fail to reveal inherent structures for complex and large datasets. Therefore, polyline clustering and coordinate sorting are inevitable for the accurate data exploration and analysis. In this paper, we propose a suite of novel clustering and dimension sorting techniques in PCP, to reveal and highlight hidden trend and correlation information of polylines. Spectrum theory is first introduced to specifically design clustering and sorting techniques for a clear view of clusters in PCP. We also provide an efficient correlation based sorting technique to optimize the ordering of coordinates to reveal correlated relations, and show how our view-range metrics, generated based on the aggregation constraints, can be used to make a clear view for easy data perception and analysis. Experimental results generated using our framework visually represent meaningful structures to guide the user, and improve the efficiency of the analysis, especially for the complex and noisy data.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Artero, A.O., De Oliveira, M., Levkowitz, H.: Uncovering clusters in crowded parallel coordinates visualizations. In: IEEE Symposium on Information Visualization, pp. 81–88 (2004)
Bach, F., Jordan, M.: Learning spectral clustering. Adv. Neural Inf. Process. Syst. 16, 305–312 (2004)
Chung, F.: Spectral graph theory. In: Conference Board of the Mathematical Sciences, pp. 88–95 (1997)
Dasgupta, A., Kosara, R.: Pargnostics: screen-space metrics for parallel coordinates. IEEE Trans. Vis. Comput. Graph. 16(6), 1017–1026 (2010)
Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Dev. 17, 420–425 (1973)
Dubes, R.C., Jain, A.K.: Algorithms for Clustering Data. Prentice Hall, New York (1988)
Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J., 298–305 (1973)
Friendly, M.: Corrgrams: exploratory displays for correlation matrices. Am. Stat., 316–324 (2002)
Friendly, M., Kwan, E.: Effect ordering for data displays. Comput. Stat. Data Anal. 37, 47–53 (2002)
Fua, Y., Ware, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. IEEE Vis., 43–50 (1999)
Fua, Y., Ware, M.O., Rundensteiner, E.A.: Structure-based brushes: a mechanism for navigating hierarchically organized data and information spaces. IEEE Trans. Vis. Comput. Graph. 6(2), 150–159 (2000)
Hagen, L., Kahng, A.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(9), 1074–1085 (1992)
Hauser, H., Ledermann, F., Doleisch, H.: Angular brushing of extended parallel coordinates. In: IEEE Symposium on Information Visualization, pp. 127–131 (2002)
Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer, New York (2009)
Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multidimensional geometry. IEEE Vis., 361–378 (1990)
Johansson, J., Ljung, P., Jern, M., Cooper, M.: Revealing structure within clustered parallel coordinates displays. In: IEEE Symposium on Information Visualization, pp. 125–132 (2005)
Johansson, J., Ljung, P., Cooper, M.: Depth cues and density in temporal parallel coordinates. Comput. Graph. Forum, 35–42 (2007)
Keim, D.: Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans. Vis. Comput. Graph. 6, 59–78 (2000)
Mcdonnell, K.T., Mueller, K.: Illustrative parallel coordinates. Comput. Graph. Forum, 1031–1038 (2008)
Meila, M.: Comparing clusterings by the variation of information. In: Proceedings of the 16th Annual Conference on Computational Learning Theory, pp. 173–187 (2003)
Novotny, M.: Visually effective information visualization of large data. In: Central European Seminar on Computer Graphics (2004)
Novotny, M., Hauser, H.: Outlier-preserving focus+ context visualization in parallel coordinates. IEEE Trans. Vis. Comput. Graph. 12(5), 893–900 (2006)
Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization, pp. 89–96 (2004)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
The homepage of xmdvtool–multivariate data visualization tool. www.davis.wpi.edu/~xmdv/index.html (2012)
Wegman, E.J., Luo, Q.: High dimensional clustering using parallel coordinates and the grand tour. Comput. Sci. Stat. 28, 352–360 (1997)
Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B.: Visual clustering in parallel coordinates. Comput. Graph. Forum 27(3), 1047–1054 (2008)
Acknowledgements
This paper has been supported by NSF grants IIS0916235, CCF0702699, and CNS0959979.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, X., Kaufman, A. Structure revealing techniques based on parallel coordinates plot. Vis Comput 28, 541–551 (2012). https://doi.org/10.1007/s00371-012-0713-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-012-0713-0