Skip to main content
Log in

Forward non-rigid motion tracking for facial MoCap

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

For the existing motion capture (MoCap) data processing methods, manual interventions are always inevitable, most of which are derived from the data tracking process. This paper addresses the problem of tracking non-rigid 3D facial motions from sequences of raw MoCap data in the presence of noise, outliers and long time missing. We present a novel dynamic spatiotemporal framework to automatically solve the problem. First, based on a 3D facial topological structure, a sophisticated non-rigid motion interpreter (SNRMI) is put forward; together with a dynamic searching scheme, it cannot only track the non-missing data to the maximum extent but recover missing data (it can accurately recover more than five adjacent markers under long time (about 5 seconds) missing) accurately. To rule out wrong tracks of the markers labeled in open structures (such as mouth, eyes), a semantic-based heuristic checking method was raised. Second, since the existing methods have not taken the noise propagation problem into account, a forward processing framework is presented to solve the problem. Another contribution is the proposed method could track facial non-rigid motions automatically and forward, and is believed to greatly reduce even eliminate the requirements of human interventions during the facial MoCap data processing. Experimental results proved the effectiveness, robustness and accuracy of our system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Gleicher, M., Ferrier, N.: Evaluating Video-Based Motion Capture. In: Conference on Computer Animation, Geneva, Switzerland, June 19–21 (2002)

    Google Scholar 

  2. Molet, T., Boulic, R., Thalmann, D.: A real time anatomical converter for human motion capture. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation, pp. 79–94 (1996)

    Google Scholar 

  3. Aristidou, A., Cameron, J., Lasenby, J.: Predicting Missing Markers to Drive Real-Time Centre of Rotation Estimation. Lecture Notes in Computer Science, vol. 5098, pp. 238–247 (2008)

    Google Scholar 

  4. Liu, G., Mcmillan, L.: Estimation of missing markers in human motion capture. Vis. Comput. 22(9–11), 721–728 (2006)

    Article  Google Scholar 

  5. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81, 231–268 (2001)

    Article  MATH  Google Scholar 

  6. Moeslund, T.B., Hiltonb, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2–3), 90–126 (2006)

    Article  Google Scholar 

  7. Dorfmüller-Ulhaas, K.: Robust optical user motion tracking using a Kalman filter. In: 10th ACM Symposium on Virtual Reality Software and Technology, Osaka, Japan (2003)

    Google Scholar 

  8. Li, B., Meng, Q., Holstein, H.: Articulated motion reconstruction from feature points. Pattern Recognit. 41(1), 418–431 (2008)

    Article  MATH  Google Scholar 

  9. Moeslund, T.B., Granum, E.: Multiple cues used in model-based human motion capture. In: The Fourth International Conference on Automatic Face and Gesture Recognition, Grenoble, France, March, pp. 362–367 (2000)

    Chapter  Google Scholar 

  10. Noh, J., Neumann, U.: A survey of facial modeling and animation techniques. University of Southern California Technical Report: University of Southern Californis, California (1998). 1998

    Google Scholar 

  11. Vicon motion systems: http://www.vicon.com/ (2009)

  12. Motion analysis: http://www.motionanalysis.com/ (2009)

  13. Autodesk Inc. Motion builder: http://usa.autodesk.com/adsk/servlet/index?id=6837710&siteID=123112 (2009)

  14. Autodesk Inc. 3DsMax software: http://usa.autodesk.com/adsk/servlet/index?id=5659292&siteID=123112 (2009)

  15. Autodesk Inc. Maya software: http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id (2009)

  16. Somasundaram, A., Parent, R.: A facial animation system for expressive audio-visual speech. OSU-CISRC-4/06-TR46, Department of Computer Science and Engineering, The Ohio State University, Columbus, OH (April 2006)

  17. Park, S.I., Hodgins, J.K.: Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25(3), 881–889 (2006)

    Article  Google Scholar 

  18. Jiang, J., Alwan, A., Keating, P.A., Chaney, B., Auer, E.T., Jr., Bernstein, L.E.: On the relationship between face movements, tongue movements, and speech acoustics. EURASIP J. Appl. Signal Process. 2002(11), 1174–1188 (2002)

    Article  Google Scholar 

  19. Edge, J.D., Sánchez, M.A., Maddock, S.: Animating speech from motion fragments. Technical Report CS-04-02, Department of Computer Science, University of Sheffield (2004)

  20. Davis, J.: Mixed scale motion recovery: http://www-graphics.stanford.edu/papers/MixedScaleMotionRecovery/content/index.html (2009)

  21. Havaldar, P.: Performance-driven facial animation. In: Proc. SIGGRAPH 2006 (Course Notes), pp. 23–42 (2006). [online]. Available http://old.siggraph.org/publications/2006cn/course29.pdf

    Google Scholar 

  22. Ekman, P., Friesen, W.V.: Facial Action Coding System. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  23. Torresani, L., Hertzmann, A., Bregler, C.: Non-rigid structure-from-motion: estimating shape and motion with hierarchical priors. IEEE Trans. Pattern Anal. Mach. Intell. (2008)

  24. Wrobel-Dautcourt, B., Berger, M.O., Potard, B., Laprie, Y., Ouni, S.: A low-cost stereovision based system for acquisition of visible articulatory data. In: Proceedings of the 5th Conference on Auditory-Visual Speech Processing, Vancouver Island, BC, Canada (2005)

    Google Scholar 

  25. Lin, I.C., Ouhyoung, M.: Mirror MoCap: Automatic and efficient capture of dense 3D facial motion parameters from video. The Visual Computer 21(6), 355–372 (2005)

    Article  Google Scholar 

  26. Guenter, B., Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F.: Making faces. In: International Conference on Computer Graphics and Interactive Techniques: ACM SIGGRAPH 2005 Courses, Los Angeles, California, 31 July–4 August 2005

    Google Scholar 

  27. Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. In: Proceedings of ACM SIGGRAPH 2005, pp. 417–425 (2005)

    Google Scholar 

  28. Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., Gross, M.: Multi-scale capture of facial geometry and motion. ACM Trans. Graph. (2007)

  29. Turk, G., O’Brien, J.F.: Modelling with implicit surfaces that interpolate. ACM Trans. Graph. 21(4), 855–873 (2002)

    Article  Google Scholar 

  30. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proc. Int. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 690–696 (2000)

    Google Scholar 

  31. Llado, X., Del Bue, A., Agapito, L.: Non-rigid 3D factorization for projective reconstruction. In: British Machine Vision Conference, Oxford, UK, September 2005

    Google Scholar 

  32. Xiao, J., Chai, J., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. In: ECCV, vol. 67, pp. 233–246 (2004)

    Google Scholar 

  33. Essa, I.A., Pentland, A.P.: Coding, analysis, interpretation, and recognition of facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 19, 757–763 (1997)

    Article  Google Scholar 

  34. Cootes, et al.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. (2001)

  35. Li, H., Roivainen, P., Forchheimer, R.: 3-D motion estimation in model-based facial image coding. IEEE Trans. Pattern Anal. Mach. Intell. 15(6), 545–555 (1993)

    Article  Google Scholar 

  36. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using Matlab, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  37. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME. J. Basic Eng., 33–45 (1960)

  38. Sinopoli, B., Schenato, L., Franceschetti, M., Poola, K.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

    Article  Google Scholar 

  39. Liu, X., Goldsmith, A.: Kalman filtering with partial observation losses. In: IEEE Conference on Decision and Control, vol. 4, pp. 4180–4186 (2004)

    Google Scholar 

  40. Yu, X., Xu, C., Tian, Q., Leong, H.W.: A ball tracking framework for broadcast soccer video. In: International Conference on Multimedia and Expo, vol. 2, pp. 265–268 (2003)

    Google Scholar 

  41. Wei, X.P., Fang, X.Y., Zhang, Q., Zhou, D.S.: 3D point pattern matching based on spatial geometric flexibility. Comput. Sci. Inf. Syst. 7(1), 231–246 (2010)

    Article  Google Scholar 

  42. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 5, 1127–1135 (1998)

    Article  MathSciNet  Google Scholar 

  43. DoRealSoft: http://en.dorealsoft.com/ (2010)

  44. Fang, X.Y., Wei, X.P.: General framework of fast online curve modeling. Comput. Aided Design (submitted)

  45. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: high-resolution capture for modeling and animation. In: ACM SIGGRAPH Proceedings, Los Angeles, CA, August 2004

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1109), the Program for Liaoning Science and Technology Research in University (No. LS2010008), the Program for Liaoning Innovative Research Team in University(No. LT2011018), Natural Science Foundation of Liaoning Province (201102008), the Program for Liaoning Key Lab of Intelligent Information Processing and Network Technology in University, “Liaoning BaiQianWan Talents Program (2010921010, 2011921009)” and by the General Project of Basic Research Program of Hunan Provincial Science and Technology Department (Grant No. 2012FJ3034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MP4 9.0 MB)

(MP4 439 kB)

(MP4 879 kB)

(MP4 1.6 MB)

(MP4 1.2 MB)

(MP4 6.2 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Wei, X., Zhang, Q. et al. Forward non-rigid motion tracking for facial MoCap. Vis Comput 30, 139–157 (2014). https://doi.org/10.1007/s00371-013-0790-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0790-8

Keywords

Navigation