Skip to main content
Log in

Triangle mesh compression along the Hamiltonian cycle

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes a novel and efficient algorithm for single-rate compression of triangle meshes. The input mesh is traversed along its greedy Hamiltonian cycle in O(n) time. Based on the Hamiltonian cycle, the mesh connectivity can be encoded by a face label sequence with low entropy containing only four kinds of labels (HETS) and the transmission delay at the decoding end that frequently occurs in the conventional single-rate approaches is obviously reduced. The mesh geometry is compressed with a global coordinate concentration strategy and a novel local parallelogram error prediction scheme. Experiments on realistic 3D models demonstrate the effectiveness of our approach in terms of compression rates and run time performance compared to the leading single-rate and progressive mesh compression methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tutte, W.T.: A census of planar triangulations. Can. J. Math. 12, 21–38 (1962)

    Article  MathSciNet  Google Scholar 

  2. Gurung, T., Luffel, M., Lindstrom, P., Rossignac, J.: LR: compact connectivity representation for triangle meshes. ACM Trans. Graph. 67, 1 (2011) (Proceedings of the SIGGRAPH Conference)

    Article  Google Scholar 

  3. Alliez, P., Gotsman, C.: Recent advances in compression of 3d meshes. In: Advances in Multiresolution for Geometric Modelling, pp. 3–26 (2005)

    Chapter  Google Scholar 

  4. Peng, J., Kim, C.S., Kuo, C.C.J.: Technologies for 3d mesh compression: a survey. J. Vis. Commun. Image Represent. 16(6), 688–733 (2005)

    Article  Google Scholar 

  5. Deering, M.: Geometry compression. In: SIGGRAPH 95, ACM SIGGRAPH, pp. 13–20 (1995)

    Chapter  Google Scholar 

  6. Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface, pp. 26–34 (1998)

    Google Scholar 

  7. Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3d meshes. In: EUROGRAPHICS 2001, pp. 480–489 (2001)

    Google Scholar 

  8. Khodakovsky, A., Alliez, P., Desbrun, M., Schröder, P.: Near-optimal connectivity encoding of 2-manifold polygon meshes. Graphical Models—Special issue: Processing on large polygonal meshes 64(3–4), 147–168 (2002)

    MATH  Google Scholar 

  9. Lee, H., Alliez, P., Desbrun, M.: Angle-analyzer: a triangle-quad mesh codec. In: EUROGRAPHICS 2002, pp. 383–392 (2002)

    Google Scholar 

  10. Isenburg, M., Snoeyink, J.: Early-split coding of triangle mesh connectivity. In: Graphics Interface, pp. 89–97 (2006)

    Google Scholar 

  11. Isenburg, M., Snoeyink, J.: Face fixer: compressing polygon meshes with properties. In: SIGGRAPH 2000, ACM SIGGRAPH, pp. 263–270 (2000)

    Google Scholar 

  12. Rossignac, J.: Edgebreaker: connectivity compression for triangle meshe. IEEE Trans. Vis. Comput. Graph. 5(1), 47–61 (1999)

    Article  Google Scholar 

  13. Jong, B.S., Yang, W.H., Tseng, J.L., Tsong, W.L.: An efficient connectivity compression for triangular meshes. In: Proceedings of Fourth Annual ACIS International Conference on Computer and Information Science (ICIS ’05), pp. 583–588 (2005)

    Chapter  Google Scholar 

  14. King, D., Rossignac, J.: Guaranteed 3.67v bit encoding of planar triangle graphs. In: Proceedings of 11th Canadian Conference on Computational Geometry, pp. 146–149 (1999)

    Google Scholar 

  15. Rossignac, J., Szymczak, A.: Wrap&zip decompression of the connectivity of triangle meshes compressed with edgebreaker. Comput. Geom. 14, 119–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Isenburg, M., Snoeyink, J.: Spirale reversi: reverse decoding of edgebreaker encoding. In: Proceedings of 12th Canadian Conference on Computational Geometry, pp. 247–256 (2000)

    Google Scholar 

  17. Kälberer, F., Polthier, K., Reitebuch, U., Wardetzky, M.: FreeLence—coding with free valences. In: EUROGRAPHICS 2005, vol. 24 (2005)

    Google Scholar 

  18. Keeler, K., Westbrook, J.: Short encodings of planar graphs and maps. Discrete Appl. Math. 58(3), 239–252 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoppe, H.: Progressive meshes. In: SIGGRAPH 96, ACM SIGGRAPH, pp. 99–108 (1996)

    Chapter  Google Scholar 

  20. Pajarola, R., Rossignac, J.: Compressed progressive meshes. IEEE Trans. Vis. Comput. Graph. 6(1), 79–93 (2006)

    Article  Google Scholar 

  21. Pajarola, R., Rossignac, J.: SQUEEZE: fast and progressive decompression of triangle meshes. In: CGI 2000, pp. 173–182 (2000)

    Google Scholar 

  22. Alliez, P., Desbrun, M.: Progressive compression for lossless transmission of triangle meshes. In: SIGGRAPH 2001, ACM SIGGRAPH, pp. 195–202 (2001)

    Google Scholar 

  23. Lee, H., Lavoué, G., Dupont, F.: Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression. In: Proceedings of Vision, Modeling, and Visualization Workshop, pp. 73–82 (2009)

    Google Scholar 

  24. Lee, H., Lavoué, G., Dupont, F.: Rate-distortion optimization for progressive compression of 3d mesh with color attributes. Vis. Comput. 28, 137–153 (2012)

    Article  Google Scholar 

  25. Ahn, J.K., Lee, D.Y., Ahn, M., Kim, C.S.: R-D optimized progressive compression of 3d meshes using prioritized gate selection and curvature prediction. Vis. Comput. 27, 769–779 (2011)

    Article  Google Scholar 

  26. Maglo, A., Courbet, C., Alliez, P., Hudelot, C.: Progressive compression of manifold polygon meshes. Comput. Graph. 36, 349–359 (2012)

    Article  Google Scholar 

  27. Peng, J., Kuo, C.C.J.: Geometry-guided progressive lossless 3d mesh coding with octree (ot) decomposition. ACM Trans. Graph. 24(3), 609–616 (2005) (Proceedings of the SIGGRAPH Conference)

    Article  Google Scholar 

  28. Peng, J., Huang, Y., Kuo, C.C.J., Eckstein, I., Gopi, M.: Feature oriented progressive lossless mesh coding. Comput. Graph. Forum 29(7), 2029–2038 (2010)

    Article  Google Scholar 

  29. Valette, S., Chaine, R., Prost, R.: Progressive lossless mesh compression via incremental parametric refinement. In: Eurographics Symposium on Geometry Processing, pp. 1301–1310 (2009)

    Google Scholar 

  30. Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: wavemesh. IEEE Trans. Vis. Comput. Graph. 10(2), 123–129 (2004)

    Article  Google Scholar 

  31. Garey, M.R., Johson, D.S., Tarjon, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chiba, N., Nishizeki, T.: Hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. J. Algorithms 10(2), 187–211 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)

    Article  Google Scholar 

  34. OpenFlipper: http://www.openflipper.org (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zheng, C. & Hu, X. Triangle mesh compression along the Hamiltonian cycle. Vis Comput 29, 717–727 (2013). https://doi.org/10.1007/s00371-013-0808-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0808-2

Keywords

Navigation