Skip to main content

Shape-aware skeletal deformation for 2D characters

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a skeleton-based method for deforming 2D characters. While previous skeleton-based methods drive the shape deformation by binding the skeleton to the shape, our method does so by propagating the skeleton transformations over the shape. In this way, the tedious process of weight selection in previous skeleton-based methods is not required. Also, the propagation allows us to consider the geometric characteristics of the shape such that local shape distortion can be effectively avoided. Experimental results demonstrate that our method allows real-time deformation and generates visually pleasing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH ’00, pp. 157–164 (2000)

    Chapter  Google Scholar 

  2. Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26(3), 339–347 (2007)

    Article  Google Scholar 

  3. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)

    Article  Google Scholar 

  4. Bregler, C., Loeb, L., Chuang, E., Deshpande, H.: Turning to the masters: motion capturing cartoons. ACM Trans. Graph. 21(3), 399–407 (2002)

    Article  Google Scholar 

  5. Craig, J.: Introduction to Robotics: Mechanics and Control. Addison–Wesley Series in Electrical and Computer Engineering: Control Engineering. Prentice Hall, New York (2005)

    Google Scholar 

  6. Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Article  MATH  Google Scholar 

  7. Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27(4), 1–21 (2008)

    Article  Google Scholar 

  8. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)

    Article  Google Scholar 

  9. Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30(4), 78:1–78:8 (2011)

    Article  Google Scholar 

  10. Jacobson, A., Sorkine, O.: Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30(6), 165 (2011)

    Article  Google Scholar 

  11. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007)

    Article  Google Scholar 

  12. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ’00, pp. 165–172 (2000)

    Chapter  Google Scholar 

  13. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  14. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)

    Article  Google Scholar 

  15. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. 25(3), 533–540 (2006)

    Article  Google Scholar 

  16. Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2-D shape blending: an intrinsic solution to the vertex path problem. In: SIGGRAPH ’93, pp. 15–18 (1993)

    Chapter  Google Scholar 

  17. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. Comput. Graph. 20(4), 151–160 (1986)

    Article  Google Scholar 

  18. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In: Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996)

    Chapter  Google Scholar 

  19. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SGP’04, pp. 175–184 (2004)

    Google Scholar 

  20. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)

    Article  Google Scholar 

  21. Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn cartoon animations. In: NPAR ’09, 25–33 (2009)

    Google Scholar 

  22. Weber, O., Sorkine, O., Lipman, Y., Gotsman, C.: Context-aware skeletal shape deformation. Comput. Graph. Forum 26(3), 265–274 (2007)

    Article  Google Scholar 

  23. Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2d shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9), 653–660 (2006)

    Article  Google Scholar 

  24. Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing. Comput. Graph. 33(3), 391–398 (2009)

    Article  MATH  Google Scholar 

  25. Yan, H.B., Hu, S., Martin, R.R., Yang, Y.L.: Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput. Graph. 14, 693–706 (2008)

    Article  Google Scholar 

  26. Yang, W., Feng, J.: 2d shape manipulation via topology-aware rigid grid. Comput. Animat. Virtual Worlds 20(2–3), 175–184 (2009)

    Article  Google Scholar 

  27. Yang, W., Feng, J., Jin, X.: Shape deformation with tunable stiffness. Vis. Comput. 24(7–9), 495–503 (2008)

    Article  Google Scholar 

  28. Yang, W., Feng, J., Wang, X.: Structure preserving manipulation and interpolation for multi-element 2D shapes. Comput. Graph. Forum 31(7/2), 2249–2258 (2012)

    Article  Google Scholar 

  29. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)

    Article  Google Scholar 

  30. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. Comput. Graph. Forum 24(3), 601–609 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. This research was partially funded by the Natural Science Foundation of China (Nos. 61003189, 61170098), the National Basic Research Program of China (No. 2009CB320801), the Natural Science Foundation of Zhejiang Province (Nos. LY12F02025, Z1101243), the Science and Technology Agency projects of Zhejiang Province (Nos. 2012C33074, 2012R10041-16), and the National High Technology Research and Development Program of China (863 Program, No. 2013AA013701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, W., Peng, H. et al. Shape-aware skeletal deformation for 2D characters. Vis Comput 29, 545–553 (2013). https://doi.org/10.1007/s00371-013-0817-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0817-1

Keywords