Abstract
This paper presents a skeleton-based method for deforming 2D characters. While previous skeleton-based methods drive the shape deformation by binding the skeleton to the shape, our method does so by propagating the skeleton transformations over the shape. In this way, the tedious process of weight selection in previous skeleton-based methods is not required. Also, the propagation allows us to consider the geometric characteristics of the shape such that local shape distortion can be effectively avoided. Experimental results demonstrate that our method allows real-time deformation and generates visually pleasing results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH ’00, pp. 157–164 (2000)
Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26(3), 339–347 (2007)
Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008)
Bregler, C., Loeb, L., Chuang, E., Deshpande, H.: Turning to the masters: motion capturing cartoons. ACM Trans. Graph. 21(3), 399–407 (2002)
Craig, J.: Introduction to Robotics: Mechanics and Control. Addison–Wesley Series in Electrical and Computer Engineering: Control Engineering. Prentice Hall, New York (2005)
Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)
Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27(4), 1–21 (2008)
Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)
Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30(4), 78:1–78:8 (2011)
Jacobson, A., Sorkine, O.: Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30(6), 165 (2011)
Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007)
Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ’00, pp. 165–172 (2000)
Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 1–10 (2008)
Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)
Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. 25(3), 533–540 (2006)
Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2-D shape blending: an intrinsic solution to the vertex path problem. In: SIGGRAPH ’93, pp. 15–18 (1993)
Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. Comput. Graph. 20(4), 151–160 (1986)
Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In: Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996)
Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: SGP’04, pp. 175–184 (2004)
Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)
Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn cartoon animations. In: NPAR ’09, 25–33 (2009)
Weber, O., Sorkine, O., Lipman, Y., Gotsman, C.: Context-aware skeletal shape deformation. Comput. Graph. Forum 26(3), 265–274 (2007)
Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2d shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9), 653–660 (2006)
Xu, K., Zhang, H., Cohen-Or, D., Xiong, Y.: Dynamic harmonic fields for surface processing. Comput. Graph. 33(3), 391–398 (2009)
Yan, H.B., Hu, S., Martin, R.R., Yang, Y.L.: Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput. Graph. 14, 693–706 (2008)
Yang, W., Feng, J.: 2d shape manipulation via topology-aware rigid grid. Comput. Animat. Virtual Worlds 20(2–3), 175–184 (2009)
Yang, W., Feng, J., Jin, X.: Shape deformation with tunable stiffness. Vis. Comput. 24(7–9), 495–503 (2008)
Yang, W., Feng, J., Wang, X.: Structure preserving manipulation and interpolation for multi-element 2D shapes. Comput. Graph. Forum 31(7/2), 2249–2258 (2012)
Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)
Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. Comput. Graph. Forum 24(3), 601–609 (2005)
Acknowledgements
We would like to thank the anonymous reviewers for their helpful comments. This research was partially funded by the Natural Science Foundation of China (Nos. 61003189, 61170098), the National Basic Research Program of China (No. 2009CB320801), the Natural Science Foundation of Zhejiang Province (Nos. LY12F02025, Z1101243), the Science and Technology Agency projects of Zhejiang Province (Nos. 2012C33074, 2012R10041-16), and the National High Technology Research and Development Program of China (863 Program, No. 2013AA013701).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, X., Yang, W., Peng, H. et al. Shape-aware skeletal deformation for 2D characters. Vis Comput 29, 545–553 (2013). https://doi.org/10.1007/s00371-013-0817-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-013-0817-1