Skip to main content

Advertisement

Log in

An empirical study on the effects of translucency on photometric stereo

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an empirical study on the effects of translucency on photometric stereo. Our study shows that the impact on the accuracy of the photometric normals is related to the relative size of the geometrical features and the mean free path. We show that under simplified conditions, the obtained photometric normals are a blurred version of the true surface normals, where the blur kernel is directly related to the subsurface scattering profile. We furthermore investigate the impact of scattering albedo, index of refraction, and single scattering on the accuracy. We perform our analysis using simulations, and demonstrate the validity on a real world example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Scattering albedo is defined as: \(\alpha= \frac{\sigma_{s}}{\sigma_{s}+\sigma _{a}}\); the ratio of scattering over scattering+absorption. Mean free path is defined as: \({{l_{d}}}= \frac{1}{\sigma_{s}+\sigma_{a}}\).

References

  1. Alldrin, N., Kriegman, D.: Toward reconstructing surfaces with arbitrary isotropic reflectance: a stratified photometric stereo approach. In: Proc. Int. Conf. Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  2. Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003)

    Article  Google Scholar 

  3. Basri, R., Jacobs, D.: Photometric stereo with general, unknown lighting. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 374–381 (2001)

    Google Scholar 

  4. D’Eon, E., Irving, G.: A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30(4), 56:1–56:14 (2011)

    Google Scholar 

  5. Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24(3), 1032–1039 (2005)

    Article  Google Scholar 

  6. Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H.W., Nayar, S.K.: An empirical bssrdf model. ACM Trans. Graph. 28(3) (2009)

  7. Godin, G., Beraldin, J.-A., Rioux, M., Levoy, M., Cournoyer, L., Blais, F.: An assessment of laser range measurement of marble surfaces. In: Proc. Fifth Conference on Optical 3-D Measurement Techniques (2001)

    Google Scholar 

  8. Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.-P.: Disco: acquisition of translucent objects. ACM Trans. Graph. 23(3), 835–844 (2004)

    Article  Google Scholar 

  9. Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying brdfs from photometric stereo. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 341–348 (2005)

    Google Scholar 

  10. Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: Proc. SIGGRAPH 93, pp. 165–174 (1993)

    Chapter  Google Scholar 

  11. Holroyd, M., Lawrence, J.: An analysis of using high-frequency sinusoidal illumination to measure the 3d shape of translucent objects. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 2985–2991 (2011)

    Google Scholar 

  12. Holroyd, M., Lawrence, J., Zickler, T.: A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Trans. Graph. 29(4) (2010)

  13. Inoshita, C., Mukaigawa, Y., Matsushita, Y., Yagi, Y.: Shape from single scattering for translucent objects. In: Proc. European Conf. Computer Vision, pp. 371–384 (2012)

    Google Scholar 

  14. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proc. SIGGRAPH 2001, pp. 511–518 (2001)

    Google Scholar 

  15. Ma, W., Hawkins, T., Peers, P., Chabert, C., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Proc. Eurographics Symposium on Rendering (2007)

    Google Scholar 

  16. Nayar, S.K., Ikeuchi, K., Kanade, T.: Determining shape and reflectance of Lambertian, specular, and hybrid surfaces using extended sources. In: International Workshop on Industrial Applications of Machine Intelligence and Vision, pp. 169–175 (1989)

    Chapter  Google Scholar 

  17. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25(3), 935–944 (2006)

    Article  Google Scholar 

  18. Nehab, D., Rusinkiewicz, S., Davis, J., Ramamoorthi, R.: Efficiently combining positions and normals for precise 3d geometry. ACM Trans. Graph. 24(3), 536–543 (2005)

    Article  Google Scholar 

  19. Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometric Considerations and Nomenclature for Reflectance. National Bureau of Standards Monograph, vol. 160 (1977)

    Google Scholar 

  20. Stam, J.: Multiple scattering as a diffusion process. In: Proc. Eurographics Workshop on Rendering, pp. 41–50 (1995)

    Google Scholar 

  21. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 3050–3068 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Google, and NSF grants IIS-1016703 and IIS-1217765. The first author acknowledges additional support from the Virginia Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen D. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, K.D., Peers, P. An empirical study on the effects of translucency on photometric stereo. Vis Comput 29, 817–824 (2013). https://doi.org/10.1007/s00371-013-0832-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0832-2

Keywords