Skip to main content
Log in

Solid texture synthesis for heterogeneous translucent materials

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a method to synthesize solid textures from heterogeneous translucent materials that have a complex pattern and subsurface scattering effect. A solid texture provides consistent texture throughout the volume, so that it can be used to model the texture on an arbitrary geometry. However, solid texture synthesis requires a huge amount of time to generate the volume. Moreover, a synthesized solid texture acquires only the color information from an input exemplar. Therefore, it has been difficult to render the appearance of a translucent object realistically without additional appearance data. In this paper, we introduce a new search method to accelerate synthesizing of solid textures. This method decomposes the candidates in an exemplar into several subgroups and searches for the best similar neighborhood in each decomposed subgroup. We also apply subsurface scattering effects to the shell layer of a synthesized object for realistic rendering of a translucent solid texture. Experimental results show that our rendering method can produce realistic rendering results for various heterogeneous translucent objects. It can also represent cross-sections of an object realistically without reconstructing the texture and surface geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arbree, A., Walter, B., Bala, K.: Heterogeneous subsurface scattering using the finite element method. IEEE Trans. Vis. Comput. Graph. 17(7), 956–969 (2011)

    Article  Google Scholar 

  2. Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Vis. Comput. 28(6–8), 701–711 (2012)

    Article  Google Scholar 

  3. Chen, J., Wang, B.: High quality solid texture synthesis using position and index histogram matching. Vis. Comput. 26(4), 253–262 (2010)

    Article  Google Scholar 

  4. Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Shell texture functions. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH’04, pp. 343–353. ACM, New York (2004)

    Chapter  Google Scholar 

  5. Chen, Y., Ip, H.H.-S.: Texture evolution: 3d texture synthesis from single 2d growable texture pattern. Vis. Comput. 20(10), 650–664 (2004)

    Article  Google Scholar 

  6. Dong, Y., Lefebvre, S., Tong, X., Drettakis, G.: Lazy solid texture synthesis. In: Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) (2008)

    Google Scholar 

  7. Donner, C., Wann Jensen, H.: A spectral bssrdf for shading human skin. In: Rendering Techniques 2006: 17th Eurographics Workshop on Rendering, pp. 409–418 (2006)

    Google Scholar 

  8. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., Rusinkiewicz, S.: A layered, heterogeneous reflectance model for acquiring and rendering human skin. In: ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH’08, pp. 1–12. ACM, New York (2008)

    Chapter  Google Scholar 

  9. Du, S.-P., Hu, S.-M., Martin, R.R.: Semiregular solid texturing from 2d image exemplars. IEEE Trans. Vis. Comput. Graph. 19(3), 460–469 (2013)

    Article  Google Scholar 

  10. Eisenacher, C., Lefebvre, S., Stamminger, M.: Texture synthesis from photographs. In: Proceedings of the Eurographics conference (2008)

    Google Scholar 

  11. Fuchs, C., Goesele, M., Chen, T., Seidel, H.-P.: An empirical model for heterogeneous translucent objects. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH’05. ACM, New York (2005)

    Google Scholar 

  12. Han, J., Zhou, K., Wei, L.-Y., Gong, M., Bao, H., Zhang, X., Guo, B.: Fast example-based surface texture synthesis via discrete optimization. Vis. Comput. 9(11), 918–925 (2006)

    Article  Google Scholar 

  13. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 327–340. ACM, New York (2001)

    Chapter  Google Scholar 

  14. Jagnow, R., Dorsey, J., Rushmeier, H.: Stereological techniques for solid textures. ACM Trans. Graph. 23, 329–335 (2004)

    Article  Google Scholar 

  15. Wann Jensen, H., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21(3), 576–581 (2002)

    Google Scholar 

  16. Wann Jensen, H., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 511–518. ACM, New York (2001)

    Chapter  Google Scholar 

  17. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.-T.: Solid texture synthesis from 2d exemplars. ACM Trans. Graph. 26(3), 2 (2007)

    Article  Google Scholar 

  18. Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. ACM Trans. Graph. 25(3), 541–548 (2006)

    Article  Google Scholar 

  19. Mount, D., Arya, S.:. Ann: A Library for Approximate Nearest Neighbor Searching (1997)

  20. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH’06, pp. 746–753. ACM, New York (2006)

    Chapter  Google Scholar 

  21. Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’85, pp. 287–296. ACM, New York (1985)

    Chapter  Google Scholar 

  22. Pietroni, N., Otaduy, M.A., Bickel, B., Ganovelli, F., Gross, M.: Texturing internal surfaces from a few cross sections. Comput. Graph. Forum 26(3), 637–644 (2007)

    Article  Google Scholar 

  23. Pietroni, N., Cignoni, P., Otaduy, M.A., Scopigno, R.: Solid-texture synthesis: a survey. IEEE Comput. Graph. Appl. 30(4), 74–89 (2010)

    Article  Google Scholar 

  24. Qin, X., Yang, Y.-H.: Aura 3d textures. IEEE Trans. Vis. Comput. Graph. 13(2), 379–389 (2007)

    Article  Google Scholar 

  25. Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range enhancement using multiple exposures. J. Electron. Imaging 12(2), 219–285 (2003)

    Article  Google Scholar 

  26. Song, Y., Chen, Y., Tong, X., Lin, S., Shi, J., Guo, B., Shum, H.-Y.: Shell radiance texture functions. Vis. Comput. 21(8–10), 774–782 (2005)

    Article  Google Scholar 

  27. Song, Y., Tong, X., Pellacini, F., Peers, P.: Subedit: a representation for editing measured heterogeneous subsurface scattering. In: ACM SIGGRAPH 2009 Papers, SIGGRAPH’09, pp. 1–10. ACM, New York (2009)

    Chapter  Google Scholar 

  28. Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Modeling and rendering of quasi-homogeneous materials. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 1054–1061. ACM, New York (2005)

    Chapter  Google Scholar 

  29. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.-Y.: Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Trans. Graph. 21, 665–672 (2002)

    Article  Google Scholar 

  30. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.-Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 9 (2008)

    Google Scholar 

  31. Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.-H., Guo, B.: Real-time rendering of heterogeneous translucent objects with arbitrary shapes. In: Computer Graphics Forum (Proceedings of Eurographics 2010) (2010)

    Google Scholar 

  32. Worley, S.: A cellular texture basis function. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’96, pp. 291–294. ACM, New York (1996)

    Chapter  Google Scholar 

  33. Wu, Q., Yu, Y.: Feature matching and deformation for texture synthesis. ACM Trans. Graph. 23(3), 364–367 (2004)

    Article  Google Scholar 

  34. Zhang, G.-X., Du, S.-P., Lai, Y.-K., Hu, S.-M.: Efficient synthesis of gradient solid textures. Graph. Models 75(3), 104–117 (2012)

    Article  Google Scholar 

  35. Zhang, G.-X., Du, S.-P., Lai, Y.-K., Ni, T., Hu, S.-M.: Sketch guided solid texturing. Graph. Models 73(3), 59–73 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2013031191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan H. Lee.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 9.4 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, M.K., Kim, HM. & Lee, K.H. Solid texture synthesis for heterogeneous translucent materials. Vis Comput 30, 271–283 (2014). https://doi.org/10.1007/s00371-013-0843-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0843-z

Keywords

Navigation