Skip to main content
Log in

New grouping and fitting methods for interactive overtraced sketches

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper describes a new method for recognizing overtraced strokes to 2D geometric primitives, which are further interpreted as 2D line drawings. This method can support rapid grouping and fitting of overtraced polylines or conic curves based on the classified characteristics of each stroke during its preprocessing stage. The orientation and its endpoints of a classified stroke are used in the stroke grouping process. The grouped strokes are then fitted with 2D geometry. This method can deal with overtraced sketch strokes in both solid and dash linestyles, fit grouped polylines as a whole polyline and simply fit conic strokes without computing the direction of a stroke. It avoids losing joint information due to segmentation of a polyline into line-segments. The proposed method has been tested with our freehand sketch recognition system (FSR), which is robust and easier to use by removing some limitations embedded with most existing sketching systems which only accept non-overtraced stroke drawing. The test results showed that the proposed method can support freehand sketching based conceptual design with no limitations on drawing sequence, directions and overtraced cases while achieving a satisfactory interpretation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Pusch, R., Samavati, F., Nasri, A., Wyvill, B.: Improving the sketch-based interface. Vis. Comput. 23(9), 955–962 (2007)

    Article  Google Scholar 

  2. Fleisch, T., Rechel, F., Santos, P., Stork, A.: Constraint stroke-based oversketching for 3d curves. In: Proceedings of Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp. 161–165. Fraunhofer Publica, Stuttgart (2004). Eurographics Association

    Google Scholar 

  3. Olsen, L., Samavati, F.F., Sousa, M.C., Jorge, J.A.: Sketch-based modeling: a survey. Comput. Graph. 33(1), 85–103 (2009)

    Article  Google Scholar 

  4. Chansri, N., Koomsap, P.: Automatic single-line drawing creation from a paper-based overtraced freehand sketch. Int. J. Adv. Manuf. Technol. (2011). doi:10.1007/s00170-011-3487-z

    Google Scholar 

  5. Qin, S.F., Wright, D.K., Jordanov, I.N.: A conceptual design tool: a sketch and fuzzy logic based system. J. Eng. Manuf. 215(1), 111–116 (2001)

    Article  Google Scholar 

  6. Kang, D.J., Masry, M., Lipson, H.: Reconstruction of a 3D object from a main axis system. In: AAAI Fall Symposium Series: Making Pen-Based Interaction Intelligent and Natural, pp. 92–98 (2004)

    Google Scholar 

  7. Masry, M., Kang, D., Lipson, H.: A freehand sketching interface for progressive construction of 3D objects. Comput. Graph. 29(4), 563–575 (2005)

    Article  Google Scholar 

  8. Pavlidis, T., Van Wyk, C.J.: An automatic beautifier for drawings and illustrations. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, vol. 3, pp. 225–234. ACM, New York (1985)

    Google Scholar 

  9. Jenkins, D.L., Martin, R.R.: Applying constraints to enforce users’ intentions in free-hand 2-D sketches. Intell. Syst. Eng. 1(1), 31–49 (1992)

    Article  Google Scholar 

  10. Igarashi, T., Kawachiya, S., Tanaka, H., Matsuoka, S.: Pegasus: a drawing system for rapid geometric design. In: Conference Summary on Human Factors in Computing Systems, pp. 24–25. ACM, New York (1998)

    Chapter  Google Scholar 

  11. Shpitalni, M., Lipson, H.: Classification of sketch strokes and corner detection using conic sections and adaptive clustering. J. Mech. Des. 119, 131 (1997)

    Article  Google Scholar 

  12. Qin, S.F., Wright, D.K., Jordanov, I.N.: On-line segmentation of freehand sketches by knowledge-based nonlinear thresholding operations. Pattern Recognit. 34(10), 1885–1893 (2001)

    Article  MATH  Google Scholar 

  13. Chansri, N., Koomsap, P.: Ongoing research on adaptive layered manufacturing from overtraced freehand sketch. In: New World Situation: New Directions in Concurrent Engineering (2010). doi:10.1007/978-0-85729-024-3_2

    Google Scholar 

  14. Sezgin, T.M., Davis, R.: Handling overtraced strokes in hand-drawn sketches. In: Proceedings of the AAAI 2004 Symposium on Making Pen-Based Interaction Intelligent and Natural, Washington, DC, pp. 141–144. AAAI, Menlo Park (2004)

    Google Scholar 

  15. Ku, D.C., Qin, S.F., Wright, D.K.: Interpretation of overtracing freehand sketching for geometric shapes. In: Proceedings of WSCG’2006, Plzen, Czech Republic, pp. 263–270. UNION Agency-Science Press, Chicago (2006)

    Google Scholar 

  16. Bruno, F., Luchi, M.L., Muzzupappa, M., Rizzuti, S.: The over-sketching technique for free-hand shape modelling in virtual reality. In: Proceedings of Virtual Concept, Biarritz, France, pp. 5–7. ACM, New York (2003)

    Google Scholar 

  17. Fu, H., Zhou, S., Liu, L., Mitra, N.: Animated construction of line drawings. ACM Trans. Graph. 30(6), 1–10 (2011)

    Article  Google Scholar 

  18. Taele, P., Hammond, T.L.AM.P.: A sketch recognition-based teaching tool for Mandarin phonetic symbols I. J. Vis. Lang. Comput. 21(2), 109–120 (2010)

    Article  Google Scholar 

  19. Hertzmann, A., Oliver, N., Curless, B., Seitz, M.: Curve analogies. In: Proceedings of Eurographics Workshop on Rendering, Pisa, Italy, pp. 233–246 (2002)

    Google Scholar 

  20. Lu, J., Yu, F., Finkelstein, A., DiVerdi, S.: HelpingHand: example-based stroke stylization. ACM Trans. Graph. 31(4), 1–10 (2012)

    Article  Google Scholar 

  21. Nataneli, G., Faloutsos, P.: Bringing sketch recognition into your hands. IEEE Comput. Graph. Appl. 99, 1 (2011)

    Google Scholar 

  22. Sheng, B., Wu, E., Sun, H.: Sketching freeform meshes using graph rotation functions. Vis. Comput. 24(7), 745–752 (2008)

    Article  Google Scholar 

  23. Ma, C.X., Liu, Y.J., Yang, H.Y., Teng, D.X., Wang, H.A., Dai, G.Z.: Knitsketch: a sketch pad for conceptual design of 2D garment patterns. IEEE Trans. Autom. Sci. Eng. 8(2), 431–437 (2011)

    Article  Google Scholar 

  24. Matsuda, K., Sugishita, S., Xu, Z., Kondo, K., Sato, H., Shimada, S.: Freehand sketch system for 3D geometric modelling. In: Shape Modeling and Applications, Aizu-Wakamatsu, Japan, pp. 55–62. IEEE, New York (1997)

    Google Scholar 

  25. Shesh, A., Chen, B.: Smartpaper: an interactive and user friendly sketching system. Comput. Graph. Forum 23(3), 301–310 (2004)

    Article  Google Scholar 

  26. Cugini, U., Wozny, M.: 3D sketch: sketch-based model reconstruction and rendering. In: Mitani, J., Suzuki, H. (eds.) From Geometric Modeling to Shape Modeling, pp. 85–98 (2002)

    Chapter  Google Scholar 

  27. Kara, L.B., D’Eramo, C.M., Shimada, K.: Pen-based styling design of 3D geometry using concept sketches and template models. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, Cardiff, UK, pp. 149–160. ACM, New York (2006)

    Chapter  Google Scholar 

  28. Kara, L.B., Stahovich, T.F.: An image-based, trainable symbol recognizer for hand-drawn sketches. Comput. Graph. 29(4), 501–517 (2005)

    Article  Google Scholar 

  29. Di Fiore, F., Van Reeth, F.: A multi-level sketching tool for pencil-and-paper animation. In: AAAI Spring Symposium on Sketch Understanding, Menlo Park, USA, pp. 32–36. AAAI, Menlo Park (2002)

    Google Scholar 

  30. Barla, P., Thollot, J., Sillion, F.X.: Geometric clustering for line drawing simplification. In: Proceedings of the Eurographics Symposium on Rendering, Massachusetts, USA, pp. 183–192. ACM, New York (2005)

    Google Scholar 

  31. Rosin, P.L.: Grouping curved lines. In: 5th British Machine Vision Conference, pp. 265–274 (1994)

    Google Scholar 

  32. Rosin, P.L.: Techniques for assessing polygonal approximations of curves. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 659–666 (1997)

    Article  Google Scholar 

  33. Wang, S.X., Gao, M.T., Qi, L.: Freehand sketching interfaces: early processing for sketch recognition. In: Human-Computer Interaction: Interaction Platforms and Techniques, Beijing, PRC, pp. 161–170. Springer, Berlin (2007)

    Chapter  Google Scholar 

  34. Wang, S.X., Gao, M.T., Qi, L.H.: Freehand sketching system using fuzzy theory. Pattern Recognit. Artif. Intell. 21(3), 317–325 (2008)

    Google Scholar 

  35. Wang, S.X., Yu, S.H.: Endpoint fusing of freehand 3D object sketch with hidden-part-draw. In: Computer-Aided Industrial Design & Conceptual Design, Hangzhou, PRC, pp. 586–590. IEEE, New York (2009)

    Google Scholar 

Download references

Acknowledgements

This work supported by National Natural Science Foundation of China (51105310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Qin, S. & Gao, M. New grouping and fitting methods for interactive overtraced sketches. Vis Comput 30, 285–297 (2014). https://doi.org/10.1007/s00371-013-0844-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0844-y

Keywords

Navigation