Skip to main content
Log in

A nonlinear level set model for image deblurring and denoising

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Image deblurring and denoising are fundamental problems in the field of image processing with numerous applications. This paper presents a new nonlinear Partial Differential Equation (PDE) model based on curve evolution via level sets, for recovering images from their blurry and noisy observations. The proposed method integrates an image deconvolution process and a curve evolution based regularizing process to form a reaction-diffusion PDE. The regularization term in the proposed PDE is a combination of a diffusive image smoothing term and a reactive image enhancement term. The diffusive and reactive terms present in the model lead to effective suppression of noise with sharp restoration of image features. We present several numerical results for image restoration, with synthetic and real degradations and compare it to other state-of-the-art image restoration techniques. The experiments confirm the favorable performance of our method, both visually and in terms of Improvement in Signal-to-Noise-Ratio (ISNR) and Pratt’s Figure Of Merit (FOM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bid: blurred image database. http://www.lps.ufrj.br/profs/eduardo/imagedatabase.htm

  2. Acar, R., Vogel, C.R.: Analysis of total variation penalty methods. Inverse Probl. 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Almansa, A., Ballester, C., Caselles, V., Haro, G.: A tv based restoration model with local constraints. IMA Preprint Series (2006)

  4. Alvarez, L., Lions, P., Morel, J.: Image selective smoothing and edge detection by nonlinear diffusion, II. SIAM J. Numer. Anal. 29, 845–866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Angenent, S.: Parabolic equations for curves on surfaces, part II: intersections, blow-up, and generalized solutions. Ann. Math. 133, 171–215 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing Partial Differential Equations and the Calculus of Variations. Springer, New York (2006)

    MATH  Google Scholar 

  7. Carasso, A.S.: Linear and nonlinear image deblurring: a documented study. SIAM J. Numer. Anal. 36(6), 1659–1689 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Chan, T., Golub, G., Mulet, P.: A nonlinear primal dual method for total variation based image restoration. SIAM J. Sci. Comput. (1998)

  10. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  11. Chantas, G., Galatsanos, N., Likas, A., Saunders, M.: Variational Bayesian image restoration based on a product of t-distributions image prior. IEEE Trans. Image Process. 17(10), 1795–1805 (2008)

    Article  MathSciNet  Google Scholar 

  12. Chantas, G.K., Galatsanos, N.P., Likas, A.C.: Bayesian restoration using a new nonstationary edge-preserving image prior. IEEE Trans. Image Process. 15(10), 2987–2997 (2006)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y., Vemuri, B.C., Wang, L.: Image denoising and segmentation via nonlinear diffusion. Comput. Math. Appl. 39, 131–149 (2000)

    Article  MathSciNet  Google Scholar 

  14. Demoment, G.: Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2024–2036 (1989)

    Article  Google Scholar 

  15. Dobson, D., Santosa, F.: Recovery of blocky images from noisy and blurred data. SIAM J. Sci. Comput. 56, 1181–1198 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Gao, S., Bui, T.D.: Image segmentation and selective smoothing by using Mumford—Shah model. IEEE Trans. Image Process. 14, 1537–1549 (2005)

    Article  Google Scholar 

  17. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the l-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jidesh, P., George, S.: A time-dependent switching anisotropic diffusion model for denoising and deblurring images. J. Mod. Opt. (2012)

  20. Zhang, L., Zhang, H.S.: Active contours driven by local image fitting energy. Pattern Recognit. 43(4), 1199–1206 (2010)

    Article  MATH  Google Scholar 

  21. Zhang, K., Zhang, L., Song, H., Zhang, D.: Re-initialization free level set evolution via reaction diffusion. IEEE Trans. Image Process. 22(1), 258–271 (2013)

    Article  MathSciNet  Google Scholar 

  22. Zhang, L., Zhang, H.S., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  23. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks and deformations 1, the components of shape and the reaction-diffusion space. Int. J. Comput. Vis. 15, 189–224 (1995)

    Article  Google Scholar 

  24. Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Process. 5, 987–995 (1996)

    Article  Google Scholar 

  25. Malladi, R., Sethian, J., Vemuri, B.: A fast level set based algorithm for topology-independent shape modeling. J. Math. Imaging Vis. 6, 269–289 (1996)

    Article  MathSciNet  Google Scholar 

  26. Malladi, R., Sethian, J.A.: Image processing via level set curvature flow. Proc. Natl. Acad. Sci. USA 92, 7046–7050 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Malladi, R., Sethian, J.A.: A unified approach to noise removal, image enhancement, and shape recovery. IEEE Trans. Image Process. 5, 1554–1568 (1996)

    Article  Google Scholar 

  28. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–174 (1995)

    Article  Google Scholar 

  29. Marquina Osher, S.: Explicit algorithms for a new time-dependent model based on level set motion for non linear deblurring and noise removal. SIAM J. Sci. Comput. 22(2), 387–405 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Neelmani, R., Choi, H., Baraniuk, R.: Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Image Process. 52(2), 418–433 (2004)

    Article  Google Scholar 

  31. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)

    Article  MATH  Google Scholar 

  32. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proc. IEEE Int. Conf. Imag. Proc., pp. 31–35 (1994)

    Google Scholar 

  34. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  35. Sapiro, G.: Vector(self) snakes: a geometric framework for color, texture and multiscale image segmentation. In: Proc. IEEE International Conference on Image Processing, vol. 1, pp. 817–820 (1996)

    Chapter  Google Scholar 

  36. Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169, 503–555 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tek, H., Kimia, B.B.: Image segmentation by reaction-diffusion bubbles. In: Fifth International Conference on Computer Vision (1995)

    Google Scholar 

  38. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  39. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7(6), 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Welk, M., Theis, D., Brox, T., Weickert, J.: Pde-based deconvolution with forward-backward diffusivities and diffusion tensors. In: Scale Space. LNCS., pp. 585–597. Springer, Berlin (2005)

    Google Scholar 

  42. You, Y., Kaveh, M.: Anisotropic blind image restoration. In: Proc. IEEE Int. Conf. Imag. Proc., Lausanne, Switzerland, vol. 2, pp. 461–464 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, A.A., Bhat, M.S. A nonlinear level set model for image deblurring and denoising. Vis Comput 30, 311–325 (2014). https://doi.org/10.1007/s00371-013-0857-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0857-6

Keywords

Navigation