Skip to main content

Advertisement

Log in

3D object retrieval via range image queries in a bag-of-visual-words context

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

3D object retrieval based on range image queries that represent partial views of real 3D objects is presented. The complete 3D models of the database are described by a set of panoramic views, and a Bag-of-Visual-Words model is built using SIFT features extracted from them. To address the problem of partial matching, we suggest a histogram computation scheme, on the panoramic views, that represents local information by taking into account spatial context. Furthermore, a number of optimization techniques are applied throughout the process for enhancing the retrieval performance. Its superior performance is shown by evaluating it against state-of-the-art methods on standard datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Adán, A., Merchán, P., Salamanca, S.: 3D scene retrieval and recognition with depth gradient images. Pattern Recognit. Lett. 32(9), 1337–1353 (2011). doi:10.1016/j.patrec.2011.03.016

    Article  Google Scholar 

  2. Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S., Azariadis, P., Sapidis, N.S.: 3D articulated object retrieval using a graph-based representation. Vis. Comput. 26(10), 1301–1319 (2010). doi:10.1007/s00371-010-0523-1

    Article  Google Scholar 

  3. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR, pp. 2911–2918. IEEE Press, New York (2012)

    Google Scholar 

  4. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  5. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV (4)’06. Lecture Notes in Computer Science, vol. 3954, pp. 517–530. Springer, Berlin (2006)

    Google Scholar 

  6. Bosch, A., Zisserman, A., Muñoz, X.: Image classification using random forests and ferns. In: ICCV’07, pp. 1–8. IEEE Press, New York (2007)

    Google Scholar 

  7. Chaouch, M., Verroust-Blondet, A.: Enhanced 2D/3D approaches based on relevance index for 3D-shape retrieval. In: SMI, p. 36. IEEE Comput. Soc., Los Alamitos (2006). doi:10.1109/SMI.2006.11

    Google Scholar 

  8. Chaouch, M., Verroust-Blondet, A.: A new descriptor for 2D depth image indexing and 3D model retrieval. In: IEEE International Conference on Image Processing (ICIP 2007), vol. 6, pp. 373–376 (2007). doi:10.1109/ICIP.2007.4379599

    Google Scholar 

  9. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22, 223–232 (2003)

    Article  Google Scholar 

  10. Chen, H., Bhanu, B.: 3D free-form object recognition in range images using local surface patches. Pattern Recognit. Lett. 28(10), 1252–1262 (2007). doi:10.1016/j.patrec.2007.02.009

    Article  Google Scholar 

  11. Cheng, E., Xie, N., Lin, H., Bakic, P.R., Maidment, A.D.A., Megalooikonomou, V.: Mammographic image classification using histogram intersection. In: ISBI, pp. 197–200. IEEE Press, New York (2010)

    Google Scholar 

  12. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision (ECCV), pp. 1–22 (2004)

    Google Scholar 

  13. Daras, P., Axenopoulos, A.: A compact multi-view descriptor for 3D object retrieval. In: Proceedings of the 2009 Seventh International Workshop on Content-Based Multimedia Indexing (CBMI ’09), pp. 115–119. IEEE Computer Society, Washington (2009). doi:10.1109/CBMI.2009.15

    Chapter  Google Scholar 

  14. Dougherty, E.R.: An introduction to Morphological Image Processing. SPIE Optical Engineering Press, Bellingham (1992)

    Google Scholar 

  15. Dutagaci, H., Godil, A., Axenopoulos, A., Daras, P., Furuya, T., Ohbuchi, R.: SHREC’09 track: querying with partial models. In: Spagnuolo, M., Pratikakis, I., Veltkamp, R., Theoharis, T. (eds.) Eurographics Workshop on 3D Object Retrieval, Munich, Germany, pp. 69–76 (2009). Eurographics Association. doi:10.2312/3DOR/3DOR09/069-076

    Google Scholar 

  16. Dutagaci, H., Godil, A., Cheung, C.P., Furuya, T., Hillenbrand, U., Ohbuchi, R.: SHREC’10 track: Range scan retrieval. In: Daoudi, M., Schreck, T. (eds.) Eurographics Workshop on 3D Object Retrieval, Norrköping, Sweden, pp. 109–115 (2010). Eurographics Association. doi:10.2312/3DOR/3DOR10/109-115

    Google Scholar 

  17. Fang, R., Godil, A., Li, X., Wagan, A.: A new shape benchmark for 3D object retrieval. In: Bebis, G., Boyle, R.D., Parvin, B., Koracin, D., Remagnino, P., Porikli, F.M., Peters, J., Klosowski, J.T., Arns, L.L., Chun, Y.K., Rhyne, T.M., Monroe, L. (eds.) ISVC (1). Lecture Notes in Computer Science, vol. 5358, pp. 381–392. Springer, Berlin (2008). doi:10.1007/978-3-540-89639-5_37

    Google Scholar 

  18. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) Proceedings of the European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science, vol. 3023, pp. 224–237. Springer, Berlin (2004). doi:10.1007/978-3-540-24672-5_18

    Google Scholar 

  19. Furuya, T., Ohbuchi, R.: Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. In: Proceedings of the ACM International Conference on Image and Video Retrieval (CIVR ’09), pp. 26:1–26:8. ACM, New York (2009)

    Google Scholar 

  20. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 36(1), 3–42 (2006)

    Article  Google Scholar 

  21. Giorgi, D., Biasotti, S., Paraboschi, L.: SHape REtrieval contest 2007: Watertight models track (2007)

  22. Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D object recognition from range images using local feature histograms. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 2, pp. 394–399. IEEE Comput. Soc., Los Alamitos (2001). doi:10.1109/CVPR.2001.990988

    Google Scholar 

  23. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002). doi:10.1145/582415.582418

    Article  Google Scholar 

  24. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999). doi:10.1109/34.765655

    Article  Google Scholar 

  25. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing (SGP ’03), Aire-la-Ville, Switzerland, pp. 156–164 (2003). Eurographics Association

    Google Scholar 

  26. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision (ICCV ’99), vol. 2, pp. 1150–1157. IEEE Comput. Soc., Washington (1999)

    Chapter  Google Scholar 

  28. Mohamed, W., Ben Hamza, A.: Reeb graph path dissimilarity for 3D object matching and retrieval. Vis. Comput. 28(3), 305–318 (2012). doi:10.1007/s00371-011-0640-5

    Article  Google Scholar 

  29. Ohbuchi, R., Furuya, T.: Scale-weighted dense bag of visual features for 3D model retrieval from a partial view 3D model. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 63–70 (2009). doi:10.1109/ICCVW.2009.5457716

    Chapter  Google Scholar 

  30. Ohbuchi, R., Nakazawa, M., Takei, T.: Retrieving 3D shapes based on their appearance. In: Proceedings of the 5th ACM SIGMM international workshop on Multimedia information retrieval, MIR ’03, pp. 39–45. ACM, New York (2003)

    Chapter  Google Scholar 

  31. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3D model retrieval. In: Shape Modeling International, pp. 93–102. IEEE Press, New York (2008). doi:10.1109/SMI.2008.4547955

    Google Scholar 

  32. Papadakis, P., Pratikakis, I., Theoharis, T., Perantonis, S.J.: PANORAMA: A 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval. Int. J. Comput. Vis. 89(2–3), 177–192 (2010)

    Article  Google Scholar 

  33. Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm for recognizing 3-D object shapes from range data. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV ’03), vol. 2, pp. 1126–1133. IEEE Comput. Soc., Washington (2003)

    Chapter  Google Scholar 

  34. Sfikas, K., Pratikakis, I., Theoharis, T.: 3D Object Retrieval via Range Image Queries based on SIFT descriptors on Panoramic Views. In: Spagnuolo, M., Bronstein, M., Bronstein, A., Ferreira, A. (eds.) Eurographics Workshop on 3D Object Retrieval, Cagliari, Italy, pp. 9–15 (2012). Eurographics Association

    Google Scholar 

  35. Sfikas, K., Theoharis, T., Pratikakis, I.: Non-rigid 3D object retrieval using topological information guided by conformal factors. Vis. Comput. 28, 943–955 (2012). doi:10.1007/s00371-012-0714-z

    Article  Google Scholar 

  36. Shih, J.L., Lee, C.H., Wang, J.T.: A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognit. 40(1), 283–295 (2007). doi:10.1016/j.patcog.2006.04.034

    Article  MATH  Google Scholar 

  37. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proceedings of the Shape Modeling International 2004 (SMI ’04), pp. 167–178. IEEE Comput. Soc., Washington (2004). doi:10.1109/SMI.2004.63

    Chapter  Google Scholar 

  38. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’11), pp. 1297–1304. IEEE Comput. Soc., Washington (2011). doi:10.1109/CVPR.2011.5995316

    Google Scholar 

  39. SHREC2011: shape retrieval contest of range scans. http://www.itl.nist.gov/iad/vug/sharp/contest/2011/RangeScans/. Accessed on 08/2012

  40. Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31, 591–606 (2009)

    Article  Google Scholar 

  41. Stavropoulos, T.G., Moschonas, P., Moustakas, K., Tzovaras, D., Strintzis, M.G.: 3D model search and retrieval from range images using salient features. IEEE Trans. Multimed. 12(7), 692–704 (2010). doi:10.1109/TMM.2010.2053023

    Article  Google Scholar 

  42. Theoharis, T., Papaioannou, G., Platis, N., Patrikalakis, N.M.: Graphics and Visualization: Principles & Algorithms. A. K. Peters, Ltd., Natick (2007)

    Google Scholar 

  43. Vranic, D.V.: DESIRE: a composite 3D-shape descriptor. In: ICME, pp. 962–965. IEEE Press, New York (2005)

    Google Scholar 

  44. Wahl, E., Hillenbrand, U., Hirzinger, G.: Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification. In: 3DIM, pp. 474–481. IEEE Comput. Soc., Los Alamitos (2003). doi:10.1109/IM.2003.1240284

    Google Scholar 

Download references

Acknowledgements

This research has been cofinanced by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF), Research Funding Program THALES-3DOR (MIS 379516). Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Sfikas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfikas, K., Theoharis, T. & Pratikakis, I. 3D object retrieval via range image queries in a bag-of-visual-words context. Vis Comput 29, 1351–1361 (2013). https://doi.org/10.1007/s00371-013-0876-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0876-3

Keywords