Skip to main content
Log in

Computer vision-based object recognition for the visually impaired in an indoors environment: a survey

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Though several electronic assistive devices have been developed for the visually impaired in the past few decades, however, relatively few solutions have been devised to aid them in recognizing generic objects in their environment, particularly indoors. Nevertheless, research in this area is gaining momentum. Among the various technologies being utilized for this purpose, computer vision based solutions are emerging as one of the most promising options mainly due to their affordability and accessibility. This paper provides an overview of the various technologies that have been developed in recent years to assist the visually impaired in recognizing generic objects in an indoors environment with a focus on approaches based on computer vision. It aims to introduce researchers to the latest trends in this area as well as to serve as a resource for developers who wish to incorporate such solutions into their own work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Medicare Vision Rehabilitation Services Act of 2003—H.R.1902 (Introduced in House—IH)

  2. World Health Organization: 10th Revision of the WHO International Statistical Classification of Diseases, Injuries and Causes of Death. http://www.cdc.gov/nchs/icd/icd10.htm

  3. Pascolini, D., Mariotti, S.P.: Global estimates of visual impairment: 2010. Br. J. Ophthalmol. (2011). doi:10.1136/bjophthalmol-2011-300539

    Google Scholar 

  4. World Health Organisation: Elimination of Avoidable Blindness Report by the Secretariat. Fifty-sixth World Health Assembly 2003

  5. Manduchi, R., Kurniawan, S.: Mobility-related accidents experienced by people with visual impairment. In: Insight: Research and Practice in Visual Impairment and Blindness, vol. 4 (2011)

    Google Scholar 

  6. Legood, R., Scuffham, P., Cryer, C.: Are we blind to injuries in the visually impaired? A review of the literature. Inj. Prev. 8, 155–160 (2002)

    Article  Google Scholar 

  7. Zhang, J., Ong, S.K., Nee, A.Y.C.: Navigation systems for individuals with visual impairment: a survey. In: Proceedings of the 2nd International Convention on Rehabilitation Engineering & Assistive Technology, Bangkok, Thailand, pp. 159–162 (2008)

    Google Scholar 

  8. Giudice, N.A., Legge, G.E.: Blind navigation and the role of technology. In: Helal, A., Mokhtari, M., Abdulrazak, B. (eds.) Engineering Handbook of Smart Technology for Aging, Disability, and Independence, pp. 479–500. Wiley, New York (2008)

    Chapter  Google Scholar 

  9. Manduchi, R., Coughlan, J.: (Computer) vision without sight. Commun. ACM 55, 96–104 (2012)

    Article  Google Scholar 

  10. Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 40, 25–35 (2010)

    Article  Google Scholar 

  11. Leporini, B., Andronico, P., Buzzi, M.: Designing search engine user interfaces for the visually impaired. In: Proceedings of the 2004 International Cross-Disciplinary Workshop on Web Accessibility (W4A), New York City, New York, pp. 57–66 (2004)

    Chapter  Google Scholar 

  12. Liu, S., Ma, W., Schalow, D., Spruill, K.: Improving web access for visually impaired users. IT Prof. 6, 28–33 (2004)

    Article  Google Scholar 

  13. Tanaka, M., Goto, H.: Text-tracking wearable camera system for visually-impaired people. In: International Conference on Pattern Recognition (ICPR 2008), Tampa, FL, pp. 1–4 (2008)

    Chapter  Google Scholar 

  14. Dumitras, T., Lee, M., Quinones, P., Smailagic, A., Siewiorek, D., Narasimhan, P.: Eye of the beholder: phone-based text-recognition for the visually-impaired. In: 10th IEEE International Symposium on Wearable Computers, Montreaux, pp. 145–146 (2006)

    Google Scholar 

  15. Jafri, R., Ali, S.A., Arabnia, H.R.: Face recognition for the visually impaired. In: The 2013 International Conference on Information and Knowledge (IKE ’13), Las Vegas, Nevada, USA, pp. 153–159 (2013)

    Google Scholar 

  16. Zuckerman, D.M.: Blind Adults in America: Their Lives and Challenges. National Center for Policy Research for Women & Families, Washington (2004)

    Google Scholar 

  17. Martínez, B., Villegas, O., Sánchez, V., Jesús Ochoa Domínguez, H., Maynez, L.: Visual perception substitution by the auditory sense. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B. (eds.) Computational Science and Its Applications—ICCSA 2011, vol. 6783, pp. 522–533. Springer, Berlin Heidelberg (2011)

    Chapter  Google Scholar 

  18. Lawson, M.A., Do, E.Y.-L., Marston, J.R., Ross, D.A.: Helping hands versus ERSP vision: comparing object recognition technologies for the visually impaired. In: HCI International 2011, 9–14 July 2011, pp. 383–388 (2011)

    Google Scholar 

  19. Bigham, J., Jayant, C., Miller, A., White, B., Yeh, T.: VizWiz::LocateIt—enabling blind people to locate objects in their environment. In: 3rd Workshop on Computer Vision Applications for the Visually Impaired (CVAVI 10), San Francisco, California (2010)

    Google Scholar 

  20. Visual impairment and blindness: fact sheet number 282. http://www.who.int/mediacentre/factsheets/fs282/en/, WHO media center (2012)

  21. Google Goggles. http://www.google.com/mobile/goggles/#text

  22. Kim, J.-H., Peli, E.: MPEG-based image enhancement for people with low-vision. SID Symp. Digest Tech. Pap. 34, 1156–1159 (2003). doi:10.1889/1.1832493

    Article  Google Scholar 

  23. Woods, R., Satgunam, P.: Television, computer and portable display device use by people with central vision impairment. Ophthalmic Physiol. Opt. 31, 258–274 (2011)

    Article  Google Scholar 

  24. Thompson, R.W., Barnett, G.D., Humayun, M.S., Dagnelie, G.: Facial recognition using simulated prosthetic pixelized vision. Invest. Ophthalmolol. Vision Sci. 44, 5035–5042 (2003)

    Article  Google Scholar 

  25. Merabet, L., Rizzo, J., Amedi, A., Somers, D., Pascual-Leone, A.: What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat. Rev. Neurosci. 6, 71–77 (2005)

    Article  Google Scholar 

  26. Crandall, W., Brabyn, J., Bentzen, B.L., Myers, L.: Remote infrared signage evaluation for transit stations and intersections. J. Rehabil. Res. Dev. 36, 341–355 (1999)

    Google Scholar 

  27. National Foundation for the Blind (NFB) Access Technology Staff GPS technology for the blind, a product evaluation. Braille Monitor 49, 101–108 (2006)

    Google Scholar 

  28. Ohkugo, H., Kamakura, K., Kitakaze, S., Fujishima, Y., Watanabe, N., Kamata, M.: Integrated wayfinding/guidance system using GPS/IR/RF/RFID with mobile device. In: 20th Annual CSUN Int Conf Technology and Persons with Disabilities, Los Angeles, CA (2005)

    Google Scholar 

  29. Wikipedia, Indoor positioning system. http://en.wikipedia.org/wiki/Indoor_positioning_system#Relation_to_GPS

  30. Wikipedia, Sonar. http://en.wikipedia.org/wiki/Sonar#Passive_sonar

  31. Koley, C., Midya, B.L.: 3-d object recognition system using ultrasound. In: 2005 3rd International Conference on Intelligent Sensing and Information Processing (ICISIP ’05), pp. 99–104 (2005)

    Chapter  Google Scholar 

  32. Sonar theory and applications: excerpt from IMAGENEX MODEL 855 color imaging sonar user’s manual

  33. Perceptual alternatives. http://www.sonicpathfinder.org/

  34. GDP Research. http://www.gdp-research.com.au/

  35. Sound foresight. http://www.soundforesight.co.uk/

  36. Borenstein, J., Ulrich, I.: The GuideCane: a computerized travel aid for the active guidance of blind pedestrians. In: IEEE Int Conf Robotics and Automation, 21–27 April 1997, pp. 1283–1288 (1997)

    Google Scholar 

  37. Cardin, S., Thalmann, D., Vexo, F.: A wearable system for mobility improvement of visually impaired people. Vis. Comput. 23, 109–118 (2007)

    Article  Google Scholar 

  38. Bay Advanced Technologies Ltd. http://www.batforblind.co.nz/

  39. Tian, X., Zhou, D., Liu, Z.: Object recognition algorithm of sonar image. In: 8th International Conference on Signal Processing, Beijing, China (2006)

    Google Scholar 

  40. Ecemiş, M.İ., Gaudiano, P.: A sonar-based sensor for object recognition. Int. J. Robot. Autom. 19 (2004)

  41. Wikipedia, Radio-frequency identification. http://en.wikipedia.org/wiki/Radio-frequency_identification

  42. Technovelgy.com—where science meets fiction. Passive RFID tag (or passive tag). http://www.technovelgy.com/ct/technology-article.asp?artnum=47

  43. Technovelgy.com—where science meets fiction. Active RFID tag (or active tag). http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=21

  44. Ivanov, R.: Indoor navigation system for visually impaired. In: 11th International Conference on Computer Systems and Technologies, pp. 143–149 (2010)

    Google Scholar 

  45. McDaniel, T.L., Kahol, K., Villanueva, D., Panchanathan, S.: Integration of RFID and computer vision for remote object perception for individuals who are blind. In: The 2008 Ambi-Sys Workshop on Haptic User Interfaces in Ambient Media Systems, Quebec City, Canada, pp. 1–10 (2008)

    Google Scholar 

  46. Willis, S., Helal, S.: RFID information grid for blind navigation and wayfinding. In: Proceedings of Ninth IEEE International Symposium on Wearable Computers, pp. 34–37 (2005)

    Chapter  Google Scholar 

  47. Chumkamon, S., Tuvaphanthaphiphat, P., Keeratiwintakorn, P.: A blind navigation system using RFID for indoor environments. In: Proceedings of 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, pp. 765–768 (2008)

    Google Scholar 

  48. Chen, J., Li, Z., Dong, M., Wang, X.: Blind path identification system design base on RFID. In: Proceedings of the 2010 International Conference on Electrical and Control Engineering, pp. 548–551 (2010)

    Chapter  Google Scholar 

  49. Saaid, M.F., Ismail, I., Noor, M.Z.H.: Radio frequency identification walking stick (RFIWS): a device for the blind. In: Proceedings of 5th International Colloquium on Signal Processing & Its Applications, Kuala Lumpur, pp. 250–253 (2009)

    Google Scholar 

  50. Murad, M., Rehman, A., Shah, A.A., Ullah, S., Fahad, M., Yahya, K.M.: RFAIDE—an RFID based navigation and object recognition assistant for visually impaired people. In: 7th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, pp. 1–4 (2011)

    Google Scholar 

  51. Parry, D., Jennings, H., Symonds, J., Ravi, K., Wright, M.: Supporting the visually impaired using RFID technology. In: Health Informatics New Zealand Forum, October 2008

    Google Scholar 

  52. Wikipedia, Image processing. http://en.wikipedia.org/wiki/Image_processing

  53. Meijer, P.B.L.: An experimental system for auditory image representations. IEEE Trans. Biomed. Eng. 39, 112–121 (1992)

    Article  Google Scholar 

  54. vOICe Learning Edition. http://www.seeingwithsound.com/

  55. Nagarajan, R., Yaacob, S., Sainarayanan, G.: Role of object identification in sonification system for visually impaired. In: Conference on Convergent Technologies for Asia-Pacific Region (TENCON 2003), pp. 735–739 (2003)

    Chapter  Google Scholar 

  56. Bach-Y-Rita, P.: Brain Mechanisms in Sensory Substitutions. Academic Press, New York (1972)

    Google Scholar 

  57. Bach-y-Rita, P., Kaczmarek, K., Tyler, M., Garcia-Lara, J.: Form perception with a 49-point electrotactile stimulus array on the tongue. J. Rehabil. Res. Dev. 35, 427–430 (1998)

    Google Scholar 

  58. Bach-y-Rita, P., Tyler, M.E., Kaczmarek, K.A.: Seeing with the brain. Int. J. Hum.-Comput. Interact. 15, 285–295 (2003)

    Article  Google Scholar 

  59. Dakopoulos, D., Boddhu, S.K., Bourbakis, N.: A 2D vibration array as an assistive device for visually impaired. In: 7th IEEE International Conference on Bioinformatics and Bioengineering, (BIBE 2007), Boston, MA, pp. 930–937 (2007)

    Google Scholar 

  60. Dakopoulos, D.: TYFLOS: a wearable navigation prototype for blind and visually impaired; design, modelling and experimental results. Ph.D. Dissertation, Computer Science and Engineering, Wright State University (2009)

  61. Akhter, S., Mirsalahuddin, J., Marquina, F.B., Islam, S., Sareen, S.: A smartphone-based haptic vision substitution system for the blind. In: 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC), Fairfax, VA, USA, pp. 1–2 (2011)

    Chapter  Google Scholar 

  62. Capelle, C., Trullemans, C.: A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Trans. Biomed. Eng. 45, 1279–1293 (1998)

    Article  Google Scholar 

  63. Collignon, O., Lassonde, M., Lepore, F., Bastien, D., Veraart, C.: Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cereb. Cortex 17, 457–465 (2007)

    Article  Google Scholar 

  64. Durette, B., Louveton, N., Alleysson, D., Hérault, J.: Visuo-auditory sensory substitution for mobility assistance: testing TheVIBE. In: Workshop on Computer Vision Applications for the Visually Impaired, pp. 1–13 (2008)

    Google Scholar 

  65. Loomis, J.: Sensory replacement and sensory substitution: overview and prospects for the future. In: Roco, M.C., Bainbridge, W.S. (eds.) Converging Technologies for Improving Human Performance, pp. 189–198. Kubler Academic Publisher, Boston (2003)

    Google Scholar 

  66. Hafez, M.: Tactile interfaces: technologies, applications and challenges. Vis. Comput. 23, 267–272 (2007)

    Article  Google Scholar 

  67. Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4, 151–156 (2008)

    Article  MathSciNet  Google Scholar 

  68. Jafri, R., Ali, S.A., Arabnia, H.R.: Computer vision-based object recognition for the visually impaired using visual tags. In: The 2013 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV ’13), Las Vegas, Nevada, USA, pp. 400–406 (2013)

    Google Scholar 

  69. Iannizzotto, G., Costanzo, C., Lanzafame, P., Rosa, F.L.: Badge3D for visually impaired. Presented at the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)—Workshops (2005)

  70. Gude, R., Østerby, M., Soltveit, S.: Blind navigation and object recognition. Laboratory for Computational Stochastics, University of Aarhus, Denmark

  71. Sudol, J., Dialameh, O., Blanchard, C., Dorcey, T.: Looktel—a comprehensive platform for computer-aided visual assistance. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, pp. 73–80 (2010)

    Google Scholar 

  72. Canny, J.F.: A computational approach to edge detection. In: Martin, A.F., Oscar, F. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 184–203. Morgan Kaufmann, San Mateo (1987)

    Chapter  Google Scholar 

  73. Nicholson, J., Kulyukin, V., Coster, D.: ShopTalk: independent blind shopping through verbal route directions and barcode scans. Open Rehabil. J. 2, 11–23 (2009)

    Article  Google Scholar 

  74. Kulyukin, V., Kutiyanawala, A.: Eyes-free barcode localization and decoding for visually impaired mobile phone users. In: The 2010 International Conference on Image Processing, Computer Vision, and Pattern Recognition, Las Vegas, NV (2010)

    Google Scholar 

  75. Kulyukin, V., Kutiyanawala, A.: From ShopTalk to ShopMobile: vision-based barcode scanning with mobile phones for independent blind grocery shopping. In: The 33-rd Annual Conference of the Rehabilitation Engineering and Assistive Technology Society of North America, Las Vegas, Nevada, USA (2010)

    Google Scholar 

  76. Kutiyanawala, A., Kulyukin, V.: An eyes-free vision-based UPC and MSI barcode localization and decoding algorithm for mobile phones. In: Envision 2010 (2010)

    Google Scholar 

  77. Lanigan, P.E., Paulos, A.M., Williams, A.W., Rossi, D., Narasimhan, P.: Trinetra: assistive technologies for grocery shopping for the blind. In: 10th IEEE International Symposium on Wearable Computers, Montreux, pp. 147–148 (2006)

    Google Scholar 

  78. Lanigan, P.E., Paulos, A.M., Williams, A.W., Rossi, D., Narasimhan, P.: Trinetra: assistive technologies for grocery shopping for the blind. In: IEEE-BAIS Symposium on Research in Assistive Technologies, Dayton, OH, pp. 29–36 (2007)

    Google Scholar 

  79. Semacode Corporation. http://semacode.com/about/

  80. Al-Khalifa, H.: Utilizing QR code and mobile phones for blinds and visually impaired people. In: Computers Helping People with Special Needs, pp. 1065–1069 (2008)

    Chapter  Google Scholar 

  81. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Seventh IEEE International Conference on Computer Vision, Kerkyra, pp. 1150–1157 (1999)

    Chapter  Google Scholar 

  82. Tekin, E., Coughlan, J.M.: A mobile phone application enabling visually impaired users to find and read product barcodes. In: Proceedings of the 12th International Conference on Computers Helping People with Special Needs, Vienna, Austria, pp. 290–295 (2010)

    Chapter  Google Scholar 

  83. Apple Inc. http://www.apple.com/iphone/

  84. Perkins Products: TalkingTag LV multi-purpose voice labels. https://secure2.convio.net/psb/site/Ecommerce/352707661?VIEW_PRODUCT=true&product_id=6862&store_id=1101

  85. Leibs, A.: Top 10 iPhone Apps for the Visually Impaired. 22 August 2012

  86. Hub, A., Hartter, T., Ertl, T.: Interactive tracking of movable objects for the blind on the basis of environment models and perception-oriented object recognition methods. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility, Portland, Oregon, USA, pp. 111–118 (2006)

    Chapter  Google Scholar 

  87. Hub, A., Hartter, T., Ertl, T.: Interactive localization and recognition of objects for the blind. In: Northridge Center on Disabilities’ 21st Annual International Technology and Persons with Disabilities Conference. California State University (2006)

    Google Scholar 

  88. Kawai, Y., Tomita, F.: A support system for visually impaired persons to understand three-dimensional visual information using acoustic interface. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), vol. 3, pp. 974–977 (2002)

    Google Scholar 

  89. Kawai, Y., Ueshiba, T., Ishiyama, Y., Sumi, Y., Tomita, F.: Stereo correspondence using segment connectivity. Presented at the Proceedings of the 14th International Conference on Pattern Recognition (1998)

  90. Blauert, J.: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, Cambridge (1997)

    Google Scholar 

  91. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  92. Bakken, T.: An evaluation of the SIFT algorithm for CBIR. Telenor R&I N 30/2007, 2007

  93. Ramisa, A., Vasudevan, S., Aldavert, D., Toledo, R., Mantaras, R.L.d.: Evaluation of the SIFT object recognition method in mobile robots. In: Proceedings of the 2009 Conference on Artificial Intelligence Research and Development: Proceedings of the 12th International Conference of the Catalan Association for Artificial Intelligence, pp. 9–18 (2009)

    Google Scholar 

  94. Schauerte, B., Martinez, M., Constantinescu, A., Stiefelhagen, R.: An assistive vision system for the blind that helps find lost things. In: Miesenberger, K., Karshmer, A., Penaz, P., Zagler, W. (eds.) Computers Helping People with Special Needs, vol. 7383, pp. 566–572. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  95. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)

    Article  Google Scholar 

  96. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  97. Pavlidis, T.: An evaluation of the Scale Invariant Feature Transform (SIFT). (25 August 2008)

  98. Ancuti, C., Bekaert, P.: Sift-cch: increasing the sift distinctness by color co-occurrence histograms. In: The Fifth International Symposium on Parallel and Distributed Processing and Applications (ISPA07), pp. 130–135 (2007)

    Google Scholar 

  99. Bauer, J., Sünderhauf, N., Protzel, P.: Comparing several implementations of two recently published feature detectors. In: Proc. of the International Conference on Intelligent and Autonomous Systems, Toulouse, France (2007)

    Google Scholar 

  100. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  101. Hasanuzzaman, F.M., Yang, X., Tian, Y.: Robust and effective component-based banknote recognition by SURF features. In: Proc. WOCC, pp. 1–6 (2011)

    Google Scholar 

  102. Chincha, R., Tian, Y.: Finding objects for blind people based on SURF features. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops, pp. 526–527 (2011)

    Chapter  Google Scholar 

  103. Winlock, T., Christiansen, E., Belongie, S.: Toward real-time grocery detection for the visually impaired. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 49–56 (2010)

    Google Scholar 

  104. Amazon mechanical turk. http://www.mturk.com/

  105. Fan, P., Men, A., Chen, M., Yang, B.: Color-SURF: a surf descriptor with local kernel color histograms. Presented at the IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC) 2009, Beijing, China (2009)

  106. Swain, M., Ballard, D.: Color indexing. Int. J. Comput. Vis. 7, 11–32 (1991)

    Article  Google Scholar 

  107. Geusebroek, J.M., Boomgaard, R.v.d., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1338–1350 (2001)

    Article  Google Scholar 

  108. Shim, S.-O., Choi, T.-S.: Image indexing by modified color co-occurrence matrix. In: IEEE International Conference on Image Processing, pp. 493–496 (2003)

    Google Scholar 

  109. Kumar, J.H., Mitra, S.R., Zhu, W.-J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of Conference IEEE Computer Vision and Pattern Recognition, pp. 762–768 (1997)

    Google Scholar 

  110. Ramadevi, Y., Sridevi, T., Poornima, B., Kalyani, B.: Segmentation and object recognition using edge detection techniques. Int. J. Comput. Sci. Inf. Technol. 2 (December) (2010)

  111. Fink, W., Tarbell, M., Weiland, J., Humayun, M.: DORA: digital object recognition audio—assistant for the visually impaired. NSF (2004)

  112. Parlouar, R., Dramas, F., Mace, M.M.-J., Jouffrais, C.: Assistive device for the blind based on object recognition: an application to identify currency bills. In: Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh, Pennsylvania, USA, pp. 227–228 (2009)

    Google Scholar 

  113. Delorme, A., Thorpe, S.J.: SpikeNET: an event-driven simulation package for modeling large networks of spiking neurons. Netw. Comput. Neural Syst. 14, 613–627 (2003)

    Article  Google Scholar 

  114. Sarfraz, M., Rizvi, S.M.A.J.: Indoor navigational aid system for the visually impaired. In: Geometric Modeling and Imaging, 2007 (GMAI ’07), 4–6 July 2007, pp. 127–132 (2007)

    Chapter  Google Scholar 

  115. Tian, Y., Yang, X., Yi, C., Arditi, A.: Toward a computer vision-based wayfinding aid for blind persons to access unfamiliar indoor environments. Mach. Vis. Appl. (2012). doi:10.5121/ijcsit.2010.2614

    Google Scholar 

  116. Maddox, B.G., Rhew, B.: A new method of edge detection for object recognition. U.S. Department of the Interior, U.S. Geological Survey Open-File Report 2004-1325 (2004)

  117. RFID-enabled license plates to identify UK vehicles. http://www.rfidnews.org/2004/06/10/rfid-enabled-license-plates-to-identify-uk-vehicles

  118. Marston, J.R., Loomis, J.M., Klatzky, R.L., Golledge, R.G., Smith, E.L.: Evaluation of spatial displays for navigation without sight. ACM Trans. Appl. Percept. 3, 110–124 (2006)

    Article  Google Scholar 

  119. Ohkugo, H., Kamakura, K., Kitakaze, S., Fujishima, Y., Watanabe, N., Kamata, M.: Integrated wayfinding/guidance system using GPS/IR/RF/RFID with mobile device. In: 20th Annual CSUN Int Conf Technology and Persons with Disabilities, Los Angeles, CA, USA (2005)

    Google Scholar 

  120. The wayfinding group. http://www.wayfinding.org

  121. Mae, Y., Umetani, T., Arai, T., Inoue, K.: Object recognition using appearance models accumulated into environment. In: Proceedings of International Conference on Pattern Recognition, pp. 845–848 (2000)

    Google Scholar 

  122. Boukraa, M., Ando, S.: A computer vision system for knowledge-based 3D scene analysis using radio-frequency tags. In: Proceedings of International Conference on Multimedia and Expo, pp. 245–248 (2002)

    Chapter  Google Scholar 

  123. Takemura, K., Ohara, K., Ohba, K., Chong, N.Y., Hirai, S., Tanie, K.: Knowledge distributed tag-based vision system. In: Proceedings of the 1st International Workshop on Networked Sensing Systems (2004)

    Google Scholar 

  124. Chong, N.Y., Hongu, H., Miyazaki, M., Takemura, K., Ohara, K., Ohba, K., Hirai, S., Tanie, K.: Robots on self-organizing knowledge networks. In: Proceedings of International Conference on Robotics and Automation, pp. 3494–3499 (2004)

    Google Scholar 

  125. Yang, M.-H.: Object recognition. In: Liu, L., Ozsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1936–1939 (2009)

    Google Scholar 

  126. Roth, P.M., Winter, M.: Survey of appearance-based methods for object recognition. Technical Report ICG-TR-01/08, Inst. for Computer Graphics and Vision, Graz University of Technology, Austria, 15 January 2008

  127. Google Project Glass. https://plus.google.com/+projectglass

  128. Duen, Y.: Currently available electronic travel aids for the blind. [Online] www.noogenesis.com.eta/current.html, 2007

  129. Velazquez, R., Pissaloux, E.E., Guinot, J.C., Maingreand, F.: Walking using touch: design and preliminary prototype of a non-invasive ETA for the visually impaired. In: Proc. of 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 6821–6824 (2005)

    Chapter  Google Scholar 

  130. Johnson, L., Higgins, C.: A Navigation Aid for the Blind using Tactile-Visual Sensory Substitution. In: Proc. IEEE Eng. Med. Biol. Soc, vol. 1, pp. 6289–6292 (2006)

    Google Scholar 

  131. Calder, D.J.: Assistive technologies and the visually impaired: a digital ecosystem perspective. In: Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments, Samos, Greece, pp. 1–8 (2010)

    Chapter  Google Scholar 

  132. Ross, D.A., Blasch, B.B.: Wearable interfaces for orientation and wayfinding. In: Proceedings of the Fourth International ACM Conference on Assistive Technologies, Arlington, Virginia, USA, pp. 193–200 (2000)

    Chapter  Google Scholar 

  133. Hakkinen, J., Vuori, T., Puhakka, M.: Postural stability and sickness symptoms after HMD use. In: Proc. of IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, pp. 147–152 (2002)

    Chapter  Google Scholar 

  134. Golledge, R., Klatzky, R., Loomis, J., Marston, J.: Stated preferences for components of a personal guidance system for nonvisual navigation. J. Vis. Impair. Blind. 98, 135–147 (2004)

    Google Scholar 

  135. Pullin, G.: Design Meets Disability. The MIT Press, Cambridge (2009)

    Google Scholar 

  136. Earl, J.: Hard times for hard cash. Nottingham Econ. Rev. (2011, 24 August 2012). http://neronline.co.uk/economics/hard-times-for-hard-cash/

Download references

Acknowledgements

This research project was supported by a grant from the “Research Center of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Jafri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafri, R., Ali, S.A., Arabnia, H.R. et al. Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Vis Comput 30, 1197–1222 (2014). https://doi.org/10.1007/s00371-013-0886-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0886-1

Keywords

Navigation