Skip to main content

Advertisement

Log in

A framework for generating anatomically detailed subject-specific human facial models for biomechanical simulations

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Realistic biomechanical simulations of the human face rely on detailed and accurate anatomical models. A recent study involving ultrasound imaging revealed that tissue structures in the human face can be separated into two major strata that move independent of each other. Based on this observation, anatomically accurate finite element models representing soft tissues in both layers of the human face were developed using 3D segmented data derived from the high-resolution US Visible Human cryosection images. The three-dimensional geometry of these tissue structures was described using Cubic Hermite finite elements. The use of Hermite family elements ensures the continuity of displacement gradient across element boundaries and hence maintains the moment balance throughout the computational domain in mechanical simulations. This in turn leads to more accurate predictions of soft tissue deformations. Creating subject-specific detailed model of the face suitable for biomechanical analysis is, however, a time-consuming task. This paper proposes a fast semi-automated framework for generating detailed subject-specific facial models including internal muscles using techniques that involve landmark-based affine transformation, iterative surface-fitting and free-form deformation. Generated models for three individuals are presented to demonstrate the efficacy of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Terzopoulos, D., Waters, K.: Physically-based facial modeling, analysis, and animation. J. Vis. Comput. Anim. 1(2) (1990)

  2. Zhang, Y., Prakash, E., Sung, E.: Real-time physically-based facial expression animation using mass-spring system. in Computer Graphics International 2001. Proceedings (2001)

  3. Kahler, K., Haber, J., Seidel, H.-P.: Geometry-based muscle modeling for facial animation. Graph. Interf. (2001)

  4. Lee, Y., Terzopoulus, D., Waters, K.: Realistic modeling for facial animation. In: SIGGRAPH ’95 (1995)

  5. Zhang, Y., Prakash, E., Sung, E.: A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh. IEEE Trans. Vis. Comput. Graphics 10(3), 339–352 (2004)

    Article  Google Scholar 

  6. Chabanas, M., Luboz, V., Payan, Y.: Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med. Image Anal. 7(2), 131–151 (2003)

    Article  Google Scholar 

  7. Koch, R., Gross, M., Carls, F., Von Buren, D., Fankhauser, G., Parish, Y.: Simulating facial surgery using finite element models. In: SIGGRAPH ’96 Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996)

  8. Keeve, E., Girod, S., Pfeifle, P., Girod, B.: Anatomy-based facial tissue modeling using the finite element method. In: Visualization ’96. Proceedings, pp. 21–28 (1996)

  9. Gladilin, E., Zachow, S., Deuflhard, P., Hege, H.: Anatomy- and physics-based facial animation for craniofacial surgery simulations. Med. Biol. Eng. Comput. 42(2), 167–170 (2004)

    Article  Google Scholar 

  10. Ackerman, M.: The visible human project. Proc. IEEE 86(3), 504–511 (1998)

    Article  Google Scholar 

  11. Barbarino, G., Jabareen, M., Trzewik, J., Nkengne, A., Stamatas, G.: Development and validation of a three-dimensional finite element model of the face. J. Biomech. Eng 131(4) (2009)

  12. Kim, H., Jürgens, P., Weber, S., Nolte, L., Reyes, M.: A new soft-tissue simulation strategy for cranio-maxillofacial surgery. Prog. Biophys. Mol. Biol. 103(2–3), 284–291 (2010)

    Article  Google Scholar 

  13. Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graphics 24(3), 417–425 (2005)

    Article  Google Scholar 

  14. Beldie, L., Walker, B., Lu, Y., Richmond, S., Middleton, J.: Finite element modelling of maxillofacial surgery and facial expressions-a preliminary study. Int. J. Med. Robotics Comput. Assist. Surg. 6(4), 422–430 (2010)

    Article  Google Scholar 

  15. Aina, O.: Generating anatomical substructures for physically-based facial animation, Bournemouth University (2011)

  16. Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)

    Article  Google Scholar 

  17. Fernandez, J., Hunter, P., Shim, V., Mithraratne, K.: A subject-specific framework to inform musculoskeletal modeling: outcomes from the IUPS Physiome project. In: Patient-Specific Computational Modeling, vol. 5, pp. 39–60. Springer, Netherlands (2012)

  18. Fernandez, J.W., Hunter, P.J.: An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech. Model. Mechanobiol. 4(1), 20–38 (2005)

    Article  Google Scholar 

  19. Shim, V.B., Streicher, R.M., Hunter, P.J., Anderson, I.A.: Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set. J. Biomech. Eng. 130(5) (2008)

  20. Oberhofer, K., Mithraratne, K., Stott, N.S., Anderson, I.A.: Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking. Vis. Comput. 25(9), 843–851 (2009)

    Article  Google Scholar 

  21. Schuenke, M., Schulte, E., Schumacher, U., Ross, L., Lamperti, E., Voll, M.: Head and Neuroanatomy. Thieme Medical Publishers, New York (2010)

    Google Scholar 

  22. Platzer, W.: Color Atlas of Human Anatomy, 6th edn., Thieme Medical Publishers, New York (2008)

  23. Aston, J., Steinbrech, D., Walden, J.: Aesthetic Plastic Surgery. Elsevier Health Sciences, Amsterdam (2009)

    Google Scholar 

  24. Erian, A., Shiffman, M.A.: Advanced Surgical Facial Rejuvenation: Art and Clinical Practice. Springer, Berlin (2011)

  25. Clemente, C.: Anatomy: a regional atlas of the human body, 6th edn., Urban & Schwarzenberg, Baltimore (1987)

  26. Mitz, V., Peron, M.: The superficial musculo-aponeurotic system (SMAS) in the parotid and cheek area. Plast. Reconstr. Surg. 58(1), 80–88 (1976)

    Article  Google Scholar 

  27. Macchi, V., Tiengo, C., Porzionato, A., Stecco, C., Vigato, E., Parenti, A.: Histotopographic study of the fibroadipose connective cheek system. Cell Tissue Organs 191(1), 47–56 (2010)

    Article  Google Scholar 

  28. Desai, C.S., Kundu, T.: Introductory finite element method, p. 496. CRC Press, Boca Raton (2001)

  29. Puso, M.A., Laursen, T.A.: A 3D contact smoothing method using gregory patches. Int. J. Numer. Methods Eng. 54(8), 1161–1194 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wu, T., Mithraratne, K., Sagar, M., Hunter, P.J.: Characterizing facial tissue sliding using ultrasonography. In: 6th World Congress of Biomechanics, Singapore (2010)

  31. Borges, A.: Relaxed skin tension lines (RSTL) versus other skin lines. Plast. Reconstr. Surg. 73(1), 144–150 (1984)

    Article  MathSciNet  Google Scholar 

  32. Mendelson, B.C.: Facelift anatomy, SMAS, retaining ligaments and facial spaces. In: Advances in Aesthetic Surgery (2008)

  33. Özdemir, R., Kilinç, H., Ünlü, R.E., Uysal, C.: Anatomicohistologic study of the retaining ligaments of the face and use in face lift: retaining ligament correction and smas plication. Plast. Reconstr. Surg. 110(4), 1134–1147 (2002)

    Article  Google Scholar 

  34. Che, S., Mithraratne, K., Hunter, P.J.: Construction of an anatomically based finite element model of the human head. In: Proceedings of World Academy of Science, Engineering and Technology, Paris, France (2009)

  35. Nicolau, P.: The orbicularis oris muscle: a functional approach to its repair in the cleft lip. Br. J. Plast. Surg. 36(2), 141–153 (1983)

  36. Zide, B.: The mentalis muscle: an essential component of chin and lower lip position. Plast. Reconstr. Surg. 105(3), 1213–1215 (2000)

    Article  Google Scholar 

  37. Goodmurphy, C., Ovalie, W.: Morphological study of two human facial muscles: orbicularis oculi and corrugator supercilii. Clin. Anat. 12(1), 1–11 (1999)

    Article  Google Scholar 

  38. Hussain, G., Manktelow, R.T., Tomcat, L.R.: Depressor labii inferioris resection: an effective treatment for marginal mandibular nerve paralysis. Br. J. Plast. Surg. 57(6), 502–510 (2004)

    Article  Google Scholar 

  39. Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Akarun, L.: “Bosphorus Database for 3D Face Analysis” in The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008), pp. 7–9. Roskilde University, Denmark (2008)

  40. Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  41. Wilkinson, C.: Forensic Facial Reconstruction. Cambridge University Press, USA (2008)

    Google Scholar 

  42. Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. ACM Siggraph Comput. Graphics (1986)

  43. Hung, A.: An Anatomically Accurate Biomechanical Model of the Human Face for Simulating Facial Expressions (PhD Thesis) (2012)

  44. Hung, A., Wu, T., Hunter, P., Mithraratne, K.: Simulating facial expressions using anatomically accurate biomechanical model. Proc. SIGGRAPH Asia 2011, 29 (2011)

    Google Scholar 

  45. Lander, T., Wirtschafter, J.D., McLoon, L.K.: Orbicularis oculi muscle fibers are relatively short and heterogeneous in length. Investig. Ophthalmol. Vis. Sci. 17(9), 1732–1739 (1996)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper was funded by the Ministry of Business, Innovation and Employment of New Zealand under the grant number UOAX0712. Authors would like to thank Sally Che for her contributions towards the development of muscle models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Pui Lam Hung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, A.P.L., Wu, T., Hunter, P. et al. A framework for generating anatomically detailed subject-specific human facial models for biomechanical simulations. Vis Comput 31, 527–539 (2015). https://doi.org/10.1007/s00371-014-0945-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0945-2

Keywords