Skip to main content
Log in

3D shape creation by style transfer

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a new style transfer method for automatic 3D shape creation based on new concepts of style and content of 3D shapes. Our unsupervised style transfer method could plausibly create novel shapes not only by recombining existent styles and contents in a set but also by combining new-coming styles or contents with the existent ones conveniently. This feature provides a better way to increase the diversity of created shapes. The process of shape creation can be summarized as two stages. First, style and content separation is performed to analyzed shapes in a set. Second, novel shapes are created by style transfer. In our setting, contents are first separated via clustering shapes using a new defined global shape distance, and then, style parts are clustered into different style classes. Specifically, style parts are extracted from each pair of intra-content shapes through comparing their multi-scale corresponding patches instead of corresponding parts. This strategy makes the process of extracting style parts become insensitive to slight geometric changes. The multi-scale corresponding patches are obtained via partitioning the two shapes in a consistent way by the proposed correspondence transfer. Meanwhile, to quantify the comparison results for locating style parts, a novel local shape difference function (LSDF) is introduced. Based on LSDF, extracting a style part from each shape is formulated as an optimal LSDF threshold selection problem. In the experiments, we test our method in several sets of man-made 3D shapes and obtain plausible created shapes based on the reasonably separated styles and contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Attene, M., Falcidieno, B.: Remesh: An interactive environment to edit and repair triangle meshes. In: Proceeding of Shape Modeling International, pp. 41–46 (2006)

  2. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: ICCV Workshops, pp. 1626–1633 (2011)

  3. Besl, P.J., McKay, N.D.: A method for registration for 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  4. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of SIGGRAPH, pp. 187–194 (1999)

  5. Brand, M., Hertzmann, A.: Style machines. In: Proceedings of SIGGRAPH, pp. 183–192 (2000)

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vision Mmanuscr. 89(2–3), 266–286 (2010)

    Article  Google Scholar 

  7. Chaudhuri, S., Kalogerakis, E., Guibas, L., Koltun, V.: Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graphics 30(4), 35:1–35:10 (2011)

    Article  Google Scholar 

  8. Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elgammal, A.M., Lee, C.S.: Separating style and content on a nonlinear manifold. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–485 (2004)

  10. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2–3), 107–145 (2001)

    Article  MATH  Google Scholar 

  11. Huang, H., Gong, M., Cohen-Or, D., Ouyang, Y., Tan, F., Zhang, H.: Field-guided registration for feature-conforming shape composition. ACM Trans. Graphics 31, 171:1–171:11 (2012)

    Google Scholar 

  12. Jain, V., Zhang, H.: Robust 3d shape correspondence in the spectral domain. In: Proceedings of Shape Modeling International, pp. 118–129 (2006)

  13. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput. Aided Design 39(5), 398–407 (2007)

    Article  Google Scholar 

  14. Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V.: A probabilistic model of component-based shape synthesis. ACM Trans. Graphics 31(4), 55:1–55:11 (2012)

    Article  Google Scholar 

  15. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 65–81 (2004)

    Article  Google Scholar 

  16. Kortgen, M., Novotni, M., Klein, R.: 3D shape matching with 3D shape contexts. In: Proceedings of Central European on Computer Graphics (2003)

  17. Li, H., Zhang, H., Wang, Y., Cao, J., Shamir, A., Cohen-Or, D.: Curve style analysis in a set of shapes. Comput. Graphics Forum 32(6), 77–88 (2013)

    Article  Google Scholar 

  18. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graphics 21(4), 807–832 (2002)

    Article  Google Scholar 

  19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  20. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.J.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graphics 31(4), 30:1–30:11 (2012)

    Article  Google Scholar 

  21. Rustamov, R.M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. ACM Trans. Graphics 32(4), 72:1–72:12 (2013)

    Article  Google Scholar 

  22. Shamir, A.: A formulation of boundary mesh segmentation. In: Proceedings of International Symposium on 3D Data Processing, Visualization and Transmission, pp. 82–89 (2004)

  23. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Visual Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  24. Shilane, P., Funkhouser, T.: Distinctive regions of 3D surfaces. ACM Trans. Graphics 26(2), 1–15 (2007)

    Article  Google Scholar 

  25. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proceedings of Shape Modeling International, pp. 167–178 (2004)

  26. Tanenbaum, J., Freeman, W.: Separating style and content with bilinear models. Neural Comput. 12(6), 1247–1283 (2000)

    Article  Google Scholar 

  27. Wang, J.M., Fleet, D.J., Hertzmann, A.: Multifactor gaussian process models for style-content separation. In: Proceedings of International Conference on Machine learning, pp. 975–982 (2007)

  28. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., Cheng, Z.Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. 29(6), 184:1–184:10 (2010)

  29. Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Fit and diverse: set evolution for inspiring 3D shape galleries. ACM Trans. Graphics 31(4), 57:1–57:10 (2012)

    Article  Google Scholar 

  30. Zheng, Y., Cohen-Or, D., Mitra, N.J.: Smart variations: functional substructures for part compatibility. Comput. Graphics Forum 32(2pt2), 195–204 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported partly by grants from National Natural Science Foundation of China (61003137, 61202185, 61005018, 91120005), Northwestern Polytechnical University Basic Research Fund (310201401JCQ01009, 310201401JCQ01012), the Fundamental Research Funds for the Central Universities, Shaanxi Natural Science Fund (2012JQ8037), and Open Project Program of the State Key Lab of CAD&CG (A1306), Zhejiang University, Program for New Century Excellent Talents in University under grant NCET-10-0079, and Doctoral Fund of Ministry of Education of China under grant 20136102110037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Liu, Z., Han, J. et al. 3D shape creation by style transfer. Vis Comput 31, 1147–1161 (2015). https://doi.org/10.1007/s00371-014-0999-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0999-1

Keywords

Navigation