Skip to main content

Advertisement

Log in

Multi-camera systems use for dental arch shape measurement

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

An Erratum to this article was published on 16 December 2016

Abstract

This paper presents the analysis of dental cast images and new mathematical methods for their evaluation. While depth sensors of sophisticated scanners allow precise spatial data processing, it is possible to use a multi-camera system for direct data acquisition and recognition of selected objects as well. The main goal of this paper is the analysis of three-dimensional objects to enable numerical evaluation of measurements important for proposals of the appropriate treatment after dental operations. Methods presented include (1) computer analysis of a single de-noised and thresholded image used for detection of its components and (2) presentation of tools for three-dimensional modeling using a double camera system. The proposed algorithms allow semi-automatic evaluation of measurements between selected objects. The resulting general algorithm can be used both in biomedical applications and engineering to detect measurements in static image frames or videosequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bohn, A.: Dental anomalies in harelip and cleft palate. Acta Odontol. Scand. 21(Suppl. 38), 98 (1963)

    Google Scholar 

  2. Bracewell, R.N.: Fourier analysis and imaging. Kluwer Academic Press, New York (2003)

  3. Chang, J.S., Shih, A.C.C., Liao, H.Y.M., Fang, W.H.: Using normal vectors for stereo correspondence construction. In: Proceedings of the 9th International Conference on Knowledge-Based Intelligent Information and Engineering Systems—Part I. KES’05, pp. 582–588. Springer, Berlin (2005)

  4. Chang, Y.B., Xia, J.J., Gateno, J., Xiong, Z., Zhou, X., Wong, S.T.C.: An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans. Med. Imaging 29(9), 1652–1663 (2010)

    Article  Google Scholar 

  5. Chapuis, J., Schramm, A., Pappas, I., Hallermann, W., Schwenzer-Zimmerer, K., Langlotz, F., Caversaccio, M.: A new system for computer-aided preoperative planning and intraoperative navigation during corrective jaw surgery. IEEE Trans. Inf. Technol. Biomed. 11(3), 274–287 (2007)

    Article  Google Scholar 

  6. Dostalova, T., Racek, J., Tauferova, E., Seydlova, M., Smutny, V., Bartonova, M.: Composite veneers, crowns, and inlay bridges after orthodontic therapy—A 3-year prospective study. Methods Inf. Med. 45, 191–194 (2006)

    Google Scholar 

  7. Dugelay, J.L., Baskurt, A., Daoudi, M.: 3D object processing. Wiley, Chichester (2008)

  8. Franken, T., Dellepiane, M., Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: Minimizing user intervention in registering 2D images to 3D models. Vis. Comput. 21(8–10), 619–628 (2005)

    Article  Google Scholar 

  9. Fujimoto, I., Takatsuji, T., Nishimura, K., Pyun, Y.: An uncertainty analysis of displacement sensors with the three-point method. J. Meas. Sci. Technol. 23(11), 115102 (2012). doi:10.1088/0957-0233/23/11/115102

  10. Gao, K., Chen, H., Zhao, Y., Geng, Y., Wang, G.: Stereo matching algorithm based on illumination normal similarity and adaptive support weight. Opt. Eng. 52(2), 027201 (2013)

    Article  Google Scholar 

  11. Gonzales, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing, Knoxville (2009)

  12. Grafova, L., Kasparova, M., Kakawand, S., Prochazka, A., Dostalova, T.: Study of edge detection task in dental panoramic X-ray images. Dentomaxillofacial Radiol. 42(7), 20120391 (2013). doi:10.1259/dmfr.20120391

  13. Guleryuz, O.G.: Iterated Denoising for Image Recovery. In: Data Compression Conference (DCC ’02), IEEE Snao Bird. (2002)

  14. Harrell, W.E., Hatcher, D.C., Bolt, R.L.: In search of anatomic truth: 3-dimensional digital modeling and the future of orthodontics. Am. J. Orthod. Dentofac. Orthop. 122(3), 325–330 (2002)

    Article  Google Scholar 

  15. Hashimoto, T., Suzuki, T.: Multi-camera-based high precision measurement approach for surface acquisition. Acta Polytech. Hung. 10(8), 139–152 (2013)

    Google Scholar 

  16. Huang, J., Wang, Z., Xue, Q., Gao, J.: Calibration of a camera projector measurement system and error impact analysis. J. Meas. Sci. Technol. 23(12), 125402 (2012). doi:10.1088/0957-0233/23/12/125402

  17. Jiang, Y., Pantle, A.J., Mark, L.: Visual inertia of rotating 3-D objects. Percept. Psychophys. 60(2), 275–286 (1998)

    Article  Google Scholar 

  18. Kasparova, M., Grafova, L., Dvorak, P., Dostalova, T., Prochazka, A., Eliasova, H., Prusa, J., Kakawand, S.: Possibility of reconstruction of dental plaster cast from 3D digital study models. Biomed. Eng. Online 12(49), 1–11 (2013)

    Google Scholar 

  19. Kasparova, M., Prochazka, A., Grafova, L., Yadollahi, M., Vysata, O., Dostalova, T.: Evaluation of dental morphometrics during the orthodontic treatment. Biomed. Eng. Online 13(68), 1–13 (2014)

    Google Scholar 

  20. Keating, A.P., Knox, J., Bibb, R., Zhurov, A.I.: A comparison of plaster, digital and reconstructed study model accuracy. J. Orthod. 35(3), 191–201 (2008)

    Article  Google Scholar 

  21. Kim, L., Park, S.H.: Haptic interaction and volume modeling techniques for realistic dental simulation. Vis. Comput. 22(2), 90–98 (2006)

    Article  Google Scholar 

  22. Kingsbury, N.G., Mugarey, J.F.A.: Wavelet transforms in image processing. In: Procházka, A., Uhlíř, J., Rayner, P.J.W., Kingsbury, N.G. (eds.) Signal analysis and prediction, vol. 2. Birkhauser, Boston (1998)

  23. Kirkham, H.L.D.: Dentition in cleft palate cases. Int. J. Orthod. Oral Surg. Radiogr. 17(11), 1076–1083 (1919)

    Article  Google Scholar 

  24. Kljuno, E., Williams, R.L.: Vehicle simulation system: controls and virtual-reality-based dynamics simulation. J. Intell. Robot. Syst. 52(1), 79–99 (2008)

    Article  Google Scholar 

  25. Kubíček, M.: Using Dragonfly IEEE-1394 Digital camera and image acquisition Toolbox. In: Sborník konf. MATLAB 2004, pp. 280–282. Prague (2004)

  26. Kukal, J., Majerová, D., Procházka, A.: Dilation and erosion of gray images with spherical masks. In: The 15th Annual Conference Technical Computing (2007)

  27. Kummer, A.W.: Cleft Palate & Craniofacial Anomalies. Cengage Learning, Stamford (2014)

  28. Lasenby, J., Stevenson, A.: Using geometric algebra for optical motion capture. In: Bayro-Corrochano, E., Sobcyzk, G. (eds.) Applied clifford algebras in computer science and engineering. Birkhauser, Boston (2000)

    Google Scholar 

  29. Musoko, V.: Biomedical Signal and Image Processing. Ph.D. thesis, Inst. of Chem. Technology, Prague (2005)

  30. Nixon, M., Aguado, A.: Feature extraction and image processing for Computer Vision. Academic Press, London (2012)

  31. Ogodescu, A.E., Ogodescu, A., Szabo, K., Tudor, A., Bratuu, E.: Dental maturity—a biologic indicator of chronological age: digital radiographic study to assess dental age in romanian children. Int. J. Biol. Biomed. Eng. 5(1), 32–40 (2011)

    Google Scholar 

  32. Owen, E.: Cleft-Palate and Hare-Lip: the earlier operation on the palate. Bailliere, Tindall and Cox, London (1904)

  33. Pavelka, A., Kubíček, M., Procházka, A.: Motion Observation and Modelling in the Virtual Reality Environment. In: Conference MATLAB 2005. ICT Prague (2005).

  34. Popielski, P., Wrobel, Z., Kaprowski, R.: Object Detail Correspondence Problem in Stereovision. In: Pietka E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine. Springer Int. (2014)

  35. Procházka, A., Kubíček, M., Pavelka, A.: Multicamera Systems in the Moving Body Recognition. In: The 48th International Symposium ELMAR 2006 IEEE (2006)

  36. Procházka, A., Ptáček, J.: Wavelet Transform Application in Biomedical Image Recovery and Enhancement. In: The 8th Multi-Conference Systemics, Cybernetics and Informatic, vol. 6, pp. 82–87, Orlando. IEEE (2004)

  37. Quan, W., Chen, J., Yu, N.: Adaptive collaborative tracking for multiple targets. J. Meas. Sci. Technol. 23(12), 125407 (2012). doi:10.1088/0957-0233/23/12/125407

  38. Ramalingam, S., Taguchi, Y.: A theory of minimal 3d point to 3d plane registration and its generalization. Int. J. Comput. Vis. 102(1–3), 73–90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ringer, M., Drummond, T., Lasenby, J.: Using Occlusions to Aid Position Estimation for Visual Motion Capture. In: Procrrdings of Computer Vision and Pattern Recoginition (CVPR). IEEE USA (2001)

  40. Ringer, M., Lasenby, J.: Modelling and Tracking of Articulated Motion from Multiple Camera Views. In: Proceedings of British Machine Vision Conference (BMVC), pp. 172–181 (2000)

  41. Ringer, M., Lasenby, J.: Multiple hypothesis tracking for automatic optical motion capture. Lecture Notes in Computer Science 2350 (2002)

  42. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22, 123–151 (2005)

    Article  Google Scholar 

  43. Semb, G.: A study of facial growth in patients with unilateral cleft lip and palate treated by the Oslo CLP Team. Cleft Palate Craniofac. J. 28, 1–21 (1991)

    Article  Google Scholar 

  44. Song, X., Zhong, F., Wang, Y., Qin, X.: Estimation of Kinect depth confidence through self-training. Vis. Comput. 30(6–8), 855–865 (2014)

    Article  Google Scholar 

  45. Trotman, C.A., Faraway, J.J., Phillips, C., van Aalst, J.: Effects of lip revision surgery in cleft lip/palate patients. J. Dent. Res. 89, 728–732 (2010)

    Article  Google Scholar 

  46. Vaseghi, S.: Advanced signal processing and digital noise reduction. Wiley & Teubner, W.Sussex (2000)

    Google Scholar 

  47. Yamamoto, K., Hayashi, S., Nishikawa, H., Nakamura, S., Mikami, T.: Measurements of dental cast profile and three-dimensional tooth movement during orthodontic treatment. IEEE Trans. Biomed. Eng. 38(4), 360–365 (1991)

    Article  Google Scholar 

  48. Yaqi, M., Zhongke, L.: Computer aided orthodontics treatment by virtual segmentation and adjustment. In: 2010 International Conference on Image Analysis and Signal Processing (IASP), pp. 336–339 (2010)

  49. Xia, P., Lopez, A.M., Restivo, M.T.: Virtual reality and haptics for dental surgery: a personal review. Vis. Comput. 29(5), 433–447 (2013)

    Article  Google Scholar 

  50. Zhang, Z., Yuan, L.: Building a 3D scanner system based on monocular vision. Appl. Opt. 51, 1638–1644 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Real dental data were kindly provided by the Department of Stomatology of the Second Medical Faculty of the Charles University in Prague. Informed consents were obtained from the patient’s legal representative. No ethical approval was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Procházka.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00371-016-1336-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procházka, A., Kašparová, M., Yadollahi, M. et al. Multi-camera systems use for dental arch shape measurement. Vis Comput 31, 1501–1509 (2015). https://doi.org/10.1007/s00371-014-1029-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1029-z

Keywords

Navigation