Abstract
In this paper, we study the visual mining of time series, and we contribute to the study and evaluation of 3D tubular visualizations. We describe the state of the art in the visual mining of time-dependent data, and we concentrate on visualizations that use a tubular shape to represent data. After analyzing the motivations for studying such a representation, we present an extended tubular visualization. We propose new visual encodings of the time and data, new interactions for knowledge discovery, and the use of rearrangement clustering. We show how this visualization can be used in several real-world domains and that it can address large datasets. We present a comparative user study. We conclude with the advantages and the drawbacks of our method (especially the tubular shape).








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Among the Android game applications, more than 30 games can be found in which a 3D tube is used.
For illustration, videos of DataTube2 can be found here https://www.youtube.com/watch?v=Td2cT1a4OY0 and, with a better quality, here http://www.vizassist.fr/DataTube2/.
The datasets can be send to the reader upon request to the authors.
References
Aigner, W., Miksch, S., Muller, W., Schumann, H., Tominski, C.: Visualizing time-oriented data-a systematic view. Comput. Graph. 31(3), 401–409 (2007)
Aigner, W., Miksch, S., Schumann, H.: Visualization of Time-Oriented Data. Human-Computer Interaction Series. Springer, Berlin (2011)
Aigner, W., Rind, A., Hoffmann, S.: Comparative evaluation of an interactive time-series visualization that combines quantitative data with qualitative abstractions. In: Computer Graphics Forum, vol. 31, pp. 995–1004. Wiley Online Library (2012)
Andrienko, G., Andrienko, N.: Dynamic time transformations for visualizing multiple trajectories in interactive space-time cube. In: International Cartographic Conference, ICC (2011)
Ankerst, M.: Visual data mining with pixel-oriented visualization techniques. In: Proceedings of the ACM SIGKDD Workshop on Visual Data Mining (2001)
Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: Proceedings of the 1998 IEEE symposium on information visualization. INFOVIS ’98, pp. 52–60. IEEE Computer Society, Washington, DC, USA (1998)
Ankerst, M., Keim, D.A., Kriegel, H.P.: Circle segments: a technique for visually exploring large multidimensional data sets. In: Proceedings of IEEE Visualization’96, Hot Topics 96 (1996)
Antunes, C.M., Oliveira, A.L.: Temporal data mining: An overview. KDD Workshop on Temporal Data Mining (2001)
Aris, A., Shneiderman, B., Plaisant, C., Shmueli, G., Jank, W.: Representing unevenly-spaced time series data for visualization and interactive exploration. In: Human-Computer Interaction-INTERACT 2005, pp. 835–846. Springer (2005)
Beardsley, T.: PROFILE: humans unite! scientific american (1999). http://www.cs.ucsd.edu/users/goguen/courses/171sp02/shneiderman.html
Bertin, J.: La graphique et le traitement graphique de l’information. Nouvelle Bibliothèque Scientifique. (1977)
Carlis, J.V., Konstan, J.A.: Interactive visualization of serial periodic data. In: Proceedings of the 11th annual ACM symposium on User interface software and technology pp. 29–38 (1998)
Cleveland, W.S.: Visualizing Data. Hobart Press, Summit (1993)
Craig, P., Roa-Seiler, N.: A vertical timeline visualization for the exploratory analysis of dialogue data. In: Information Visualisation (IV), 2012 16th International Conference on IEEE, pp. 68–73. (2012)
Daassi, C., Dumas, M., Fauvet, M.C., Nigay, L., Scholl, P.C.: Visual exploration of temporal object databases. In: proceedinga of BDA00 conference pp. 24–27 (2000)
Francis, B., Pritchard, J.: Visualisation of historical events using Lexis pencils. Case Stud. Vis. Soc. Sci. 30 (2003)
Hackstadt, S.T., Malony, A.D.: Visualizing parallel program and performance data with IBM Visualisation data explorer. Master’s thesis (1994)
Hao, M.C., Marwah, M., Janetzko, H., Dayal, U., Keim, D.A., Patnaik, D., Ramakrishnan, N., Sharma, R.K.: Visual exploration of frequent patterns in multivariate time series. Inf. Vis. 11(1), 71–83 (2012)
Hébrail, G., Debregeas, A.: Interactive interpretation of Kohonen maps applied to curves. In: Proceedings of the 4th international conference on knowledge discovery and data mining. AAAI press, Menlo Park pp. 179–183 (1998)
Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Queue 30(30), 30–55 (2012)
Hofmann, H., Follett, L., Majumder, M., Cook, D.: Graphical tests for power comparison of competing designs. IEEE Trans. Vis. Comput. Graph 18(12), 2441–2448 (2012)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)
Kandogan, E.: Star coordinates: a multi-dimensional visualization technique with uniform treatment of dimensions. IEEE Symp. Inf. Vis. 2000, 4–8 (2000)
Keim, D.A., Ankerst, M., Kriegel, H.P.: Recursive pattern: a technique for visualizing very large amounts of data. In: Proceedings of the 6th conference on visualization’95 pp. 279–286 (1995)
Keim, D.A., Kohlhammer, J., Ellis, G., Mansmann, F. (eds.): Mastering the information age—solving problems with visual analytics. Eurographics (2010). http://www.vismaster.eu/book/
Keim, D.A., Kriegel, H.P.: Visualization techniques for mining large databases: a comparison. IEEE Trans. Knowl. Data Eng. 8(6), 923–938 (1996)
Kincaid, R., Lam, H.: Line graph explorer: scalable display of line graphs using focus+context. In: Proceedings of the working conference on advanced visual interfaces, AVI ’06, pp. 404–411. ACM (2006)
Krstajic, M., Bertini, E., Keim, D.: Cloudlines: compact display of event episodes in multiple time-series. IEEE Trans. Vis. Comput. Graph. 17(12), 2432–2439 (2011)
Lin, J., Keogh, E., Lonardi, S., Lankford, J.P., Nystrom, D.M.: Viztree: a tool for visually mining and monitoring massive time series databases. In: Proceedings of international conference on very large data bases, pp. 1269–1272 (2004)
Mackinlay, J.D., Robertson, G.G., Card, S.K.: The perspective wall: Detail and context smoothly integrated. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 173–176. ACM (1991)
McCormick, W.T., Schweitzer, P.J., White, T.W.: Problem decomposition and data reorganization by a clustering technique. Operat. Res. 20 5(5), 993–1009 (1972)
McLachlan, P., Munzner, T., Koutsofios, E., North, S.: Liverac: interactive visual exploration of system management time-series data. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 1483–1492. ACM (2008)
Minard, C.J.: Carte figurative des pertes successives en hommes de l’Armée Française dans la campagne de Russie. pp. 1812–1813 (1861)
Mitchell, K., Kennedy, J.: The perspective tunnel: an inside view on smoothly integrating detail and context. In: Visualization in scientific computing ’97: proceedings of the Eurographics Workshop, Springer Computing Science. Springer (1997)
Muller, W., Schumann, H.: Visualization methods for time-dependent data-an overview. Simulation conference, 2003. In Proceedings of the 2003 Winter 1, pp. 737–745 (2003)
Nekrasovski, D., Bodnar, A., McGrenere, J., Guimbretière, F., Munzner, T.: An evaluation of pan and zoom and rubber sheet navigation with and without an overview. In: Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 11–20. ACM (2006)
Oelke, D., Janetzko, H., Simon, S., Neuhaus, K., Keim, D.A.: Visual boosting in pixel-based visualizations. In: Computer Graphics Forum, vol. 30, pp. 871–880. Wiley Online Library (2011)
Shmueli, G., Jank, W., Aris, A., Plaisant, C., Shneiderman, B.: Exploring auction databases through interactive visualization. Decis. Support Syst. 42(3), 1521–1538 (2006)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE visual languages, UMCP-CSD CS-TR-3665, pp. 336–343. College Park, Maryland 20742, U.S.A. (1996). http://www.citeseer.ist.psu.edu/shneiderman96eyes.html
Suntinger, M., Obweger, H., Schuh, J., Gröller, M.E.: Event tunnel: exploring event-driven business processes. IEEE Comput. Graph. Appl. 28(5), 46–55 (2008)
Sureau, F., Plantard, F., Bouali, F., Venturini, G.: Visual mining of web logs with DataTube2. In: Tenth international conference on web information system engineering (WISE), LNCS, Springer, pp. 555–562 (2008)
Theron, R.: Hierarchical-temporal data visualization using a tree-ring metaphor. Lect. Notes Comput. Sci. 4073(2006), 70–81 (2006)
Tominski, C., Schumann, H.: Enhanced interactive spiral display. In: Proceedings of the annual SIGRAD conference, special theme: interactivity, pp. 53–56 (2008)
Wattenberg, M.: Arc diagrams: visualizing structure in strings. information visualization, 2002. INFOVIS 2002. IEEE symposium on pp. 110–116 (2002)
Weber, M., Alexa, M., Muller, W.: Visualizing time-series on spirals. Information visualization, 2001. INFOVIS 2001. IEEE symposium on pp. 7–13 (2001)
van Wijk, J.J., van Selow, E.R.: Cluster and calendar based visualization of time series data. In: Proceedings of IEEE symposium on information visualization pp. 4–9 (1999)
Wong, P.C., Bergeron, R.D.: 30 years of multidimensional multivariate visualization. Scientific visualization—Overviews. Methodologies and Techniques, pp. 3–33. IEEE Computer Society Press, Los Alamitos, CA (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bouali, F., Devaux, S. & Venturini, G. Visual mining of time series using a tubular visualization. Vis Comput 32, 15–30 (2016). https://doi.org/10.1007/s00371-014-1052-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-014-1052-0