Abstract
In this paper, a hierarchal feature extraction and ensemble classification-based framework for object detection is proposed. The proposed object detection technique is motivated by the hierarchical learning mechanism in primate visual cortex, where each layer processes information differently. Initially, pyramid histogram of oriented gradients (PHOG) based descriptors are selected to generate shift and scale invariant descriptors of an image. PHOG-based feature descriptors are then processed in multi-layered hierarchy, following feed forward models in brain’s visual cortex and exploited through ensemble classification techniques. The proposed cortex-inspired ensemble-based object detection (CI-EnsOD) system exploits hierarchical learning mechanism of visual cortex and it is computationally efficient compared to the existing cortex-inspired models. In addition, it reduces feature dimensionality and offers improved object detection performance. The performance of proposed technique is demonstrated using three publically available standard datasets. It is shown experimentally that the prototype selection in the proposed CI-EnsOD can be improved using k-means clustering. The obtained experimental results show that the proposed CI-EnsOD technique is more accurate and efficient than contemporary cortex-inspired object detection techniques. Finally, it is also observed that the proposed technique is capable of providing compact descriptors compared to principle component analysis and independent component analysis.














Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1002, pp. 994–1000, 20–25 June 2005
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 29(3), 411–426 (2007)
Perrett, D.I., Oram, M.W.: Neurophysiology of shape processing. Image Vis. Comput. 11(6), 317–333 (1993)
Thorpe, S.J.: Ultra-rapid scene categorization with a wave of spikes. In: Proceedings of the Second International Workshop on Biologically Motivated Computer Vision, pp. 1–15. Springer, Berlin (2002)
Moshe, B.: A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cognit. Neurosci. 15(4), 600–609 (2003). doi:10.1162/089892903321662976
DiCarlo, James J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)
Haushofer, J., Kanwisher, N.: In the eye of the beholder: visual experience and categories in the human brain. Neuron 53(6), 773–775 (2007)
McManus, J.N.J., Li, W., Gilbert, C.D.: Adaptive shape processing in primary visual cortex. In: Proceedings of the National Academy of Sciences, vol. 24, pp. 9739–9746, 14 June, 2011,
Maximilian, R., Tomaso, P.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)
Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A Theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. In. AI Memo 2005-036/CBCL Memo 259, Massachusetts Institute of Technology, Cambridge, 2005
Gabor, D.: Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng. III Radio Commun. Eng. 93(26), 429–441 (1946)
Jones, J.P., Larry, P.A.: The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1187–1211 (1987)
LeCun, Y., Fu Jie, H., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 102, pp. II-97–104 , 27 June–2 July 2004
Amit, Y., Mascaro, M.: An integrated network for invariant visual detection and recognition. Vis. Res. 43(19), 2073–2088 (2003)
Panzoli, D., de Freitas, S., Duthen, Y., Luga, H.: The cortexionist architecture: behavioural intelligence of artificial creatures. Vis. Comput. 26(5), 353–366 (2010). doi:10.1007/s00371-010-0424-3
Heiko, W., Edgar, K.: Learning optimized features for hierarchical models of invariant object recognition. Neural Computat. 15(7), 1559–1588 (2003). doi:10.1162/089976603321891800
Jiang, X., Zhong, F., Peng, Q., Qin, X.: Online robust action recognition based on a hierarchical model. Vis. Comput. 30(9), 1021–1033 (2014). doi:10.1007/s00371-014-0923-8
Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29(10), 983–1009 (2013). doi:10.1007/s00371-012-0752-6
Jafri, R., Ali, S., Arabnia, H., Fatima, S.: Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Vis. Comput. 30(11), 1197–1222 (2014). doi:10.1007/s00371-013-0886-1
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 881, pp. 886–893, 25 June 2005
van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 32(9), 1582–1596 (2010)
Wada, T., Huang, F., Lin, S., Watanabe, T., Ito, S., Yokoi, K.: Co-occurrence Histograms of Oriented Gradients for Pedestrian Detection. In: Advances in Image and Video Technology, vol. 5414. Lecture Notes in Computer Science, pp. 37–47. Springer, Berlin (2009)
Anna, B., Andrew, Z., Xavier, M.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM international conference on Image and Video Retrieval, pp. 401–408, ACM, Amsterdam, The Netherlands (2007)
Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by learning and combining object parts. Adv. Neural Inf. Process. Syst. 14, 1239–1245 (2001)
Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 531, pp. 539–546, 20–25 June 2005
Goyal, S., Benjamin, P.: Object Recognition Using Deep Neural Networks: A Survey. arXiv:1412.3684 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)
Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J.: Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 10(12), e1003963 (2014)
Solgi, M., Juyang, W.: Developmental stereo: emergence of disparity preference in models of the visual cortex. IEEE Trans. Auton. Ment. Dev. 1(4), 238–252 (2009). doi:10.1109/TAMD.2009.2038360
Abdullah, D., Murtza, I., Khan, A.: Feature extraction and reduction strategy based on pyramid HOG and hierarchal exploitation of cortex-like mechanisms. In: IEEE Multi Topic Conference (INMIC), pp. 160–165, 19–20 Dec 2013
Lior, R.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010). doi:10.1007/s10462-009-9124-7
Zhang, C., Ma, Y., Polikar, R.: Ensemble learning. In: Ensemble Machine Learning. pp. 1–34. Springer, New York (2012)
Jolliffe, I.: Principal component analysis. In: Everitt, B., Howell, D. (eds.) Encyclopedia of Statistics in Behavioral Science. Wiley, New York (2005)
Jolliffe, I.T.: Principal Component Analysis. Wiley, New York (2002)
Stone, J.V.: Independent component analysis. In: Everitt, B., Howell, D. (eds.) Encyclopedia of Statistics in Behavioral Science. Wiley, New York (2005)
Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000). doi:10.1016/S0893-6080(00)00026-5
Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: Proceedings of International Conference on Image Processing (ICIP), vol. 512, pp. III-513–516, 14-17 Sept 2003
Michael, J.S., Dana, H.B.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991). doi:10.1007/bf00130487
Thedoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Elsevier, Amsterdam (2009)
Dalal, N.: INRIA person dataset. http://pascal.inrialpes.fr/data/human/ (2005)
MIT CBCL PEDESTRIAN DATABASE #1. In: MIT, C.f.B.a.C.L.a.M.a. (ed.) (2000)
Caltech motorbikes (side) dataset. In: Technology, C.I.o. (ed.) (2003)
Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 611–622 (1999). doi:10.1111/1467-9868.00196
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Research involving human participants and/or animals
No experiments were performed that involved Humans/Animals.
Informed consent
No human participants-based experiments were performed, so informed consent not needed.
Rights and permissions
About this article
Cite this article
Murtza, I., Abdullah, D., Khan, A. et al. Cortex-inspired multilayer hierarchy based object detection system using PHOG descriptors and ensemble classification. Vis Comput 33, 99–112 (2017). https://doi.org/10.1007/s00371-015-1155-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-015-1155-2