Abstract
This paper proposes a framework based on harmonic mean normalized Laplace–Beltrami spectral descriptor. A series of experiments show that the harmonic mean normalization has better performance for non-rigid 3D retrieval, and it is robust to holes, local scaling, noise and sampling. To better distinguish shapes with fine or rough details, weighting method and fusion method are also employed. Weighting method reduces the negative impact of high-frequency information, and fusion method combines multi-level spectral information in both low and high frequencies. Our approach has better performance than other state-of-the-art methods on both retrieval accuracy and time consumption for stretched non-rigid 3D shapes.














Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lian, Z., Godil, A., Sun, X.: Visual similarity based 3D shape retrieval using bag-of-features. In: Shape Modeling International Conference (SMI), pp. 25–36. IEEE (2010)
Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens P.: Isometric deformation modelling for object recognition. In: Computer Analysis of Images and Patterns, pp. 757–765. Springer, Heidelberg (2009)
Furuya, T., Ohbuchi, R.: Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. In: the ACM International Conference on Image and Video Retrieval, p. 26. ACM (2009)
Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30, 1–20 (2011)
Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens, P.: Inelastic deformation invariant modal representation for non-rigid 3D object recognition. In: Articulated Motion and Deformable Objects, pp. 162–171. Springer, Heidelberg (2010)
Reuter, M., Wolter, F., Peinecke, N.: Laplace–Beltrami spectra as shape-DNA of surfaces and solids. Comput. Aided Des. 38, 342–366 (2006)
Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: The 2005 ACM Symposium on Solid and Physical Modeling (SPM2005), pp. 101–106. ACM (2005)
Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Nguyen, H.V., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M.: SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: The 4th Eurographics Conference on 3D Object Retrieval (SHREC2011), pp. 79–88. Eurographics Association Press (2011)
Berger, M.: Geometry I. Springer, Berlin (1987)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Waisman, D., Sochen, N., Kimmel, R.: Equiaffine invariant geometry for shape analysis. J. Math. Imaging Vis. 50(1–2), 144–163 (2014)
Raviv, D., Kimmel, R.: Affine invariant geometry for non-rigid shapes. Int. J. Comput. Vis. 111(1), 1–11 (2015)
Bu, S., Han, P., Liu, Z., Li, K., Han, J.: Shift-invariant ring feature for 3D shape. Vis. Comput. 30(6–8), 867–876 (2014)
Li, C., Hamza, A.B.: A multiresolution descriptor for deformable 3D shape retrieval. Vis. Comput. 29(6–8), 513–524 (2013)
Li, B., Godil, A., Johan, H.: Hybrid shape descriptor and meta similarity generation for non-rigid and partial 3D model retrieval. Multimed. Tools Appl. 72(2), 1531–1560 (2014)
Levy, B.: Laplace-Beltrami eigenfunctions: towards an algorithm that understands geometry. In: Shape Modeling and Applications (SMI2006), pp. 13–20. IEEE (2006)
Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)
Fouss, F., Pirotte, A., Renders, J., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)
Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic distance. ACM Trans. Graph. 29(3), 483–496 (2010)
Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. 5, 1065–1071 (2010)
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: The Fifth Eurographics Symposium on Geometry Processing, pp. 225–233. Eurographics Association (2007)
Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Computer Vision and Pattern Recognition (CVPR2010), pp. 1704–1711. IEEE (2010)
Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: Computer Vision Workshops (ICCV), pp. 1626–1633. IEEE (2011)
Fang, Y., Sun, M., Kim, M., Ramani, K.: Heat-mapping: a robust approach toward perceptually consistent mesh segmentation. In: Computer Vision and Pattern Recognition (CVPR), pp. 2145–2152. IEEE (2011)
Marini, S., Patanè, G., Spagnuolo, M., Falcidieno, B.: Feature selection for enhanced spectral shape comparison. In: The 3rd Eurographics Conference on 3D Object Retrieval (SHREC2010), pp. 31–38. Eurographics Association (2010)
Raviv, D., Raskar, R.: Scale invariant metrics of volumetric datasets. SIAM J. Imaging Sci. 8(1), 403–425 (2015)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: Computer Vision and Pattern Recognition (CVPR), pp. 373–380. IEEE (2009)
Carcassoni, M., Hancock, E.R.: Spectral correspondence for point pattern matching. Pattern Recognit. 36(1), 193–204 (2003)
Aflalo, Y., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Deformable shape retrieval by learning diffusion kernels. In: Scale Space and Variational Methods in Computer Vision, pp. 689–700. Springer, Heidelberg (2011)
Lian, Z., Rosin, P.L., Sun, X.: Rectilinearity of 3D meshes. IEEE Trans. Pattern Anal. Mach. Intell. 89(2–3), 130–151 (2010)
Wu, H.H., Luo, T., Wang, X.L., Ma, S.: Global and local isometry-invariant descriptor for 3D shape comparison and partial matching. In: Computer Vision and Pattern Recognition (CVPR), pp. 438–445. IEEE (2010)
Lavoué, G.: Bag of words and local spectral descriptor for 3D partial shape retrieval. In: Eurographics Workshop on 3D Object Retrieval, pp. 41–48. ACM (2011)
Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics, pp. 35–57 (2003)
Shilanem, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Shape Modeling International (SMI), pp. 167–178. IEEE (2004)
Lian, Z., Godil, A., Fabry, T., Furuya, T., Hermans, J., Ohbuchi, R., Shu, C., Smeets, D., Suetens, P., Vandermeulen, D., Wuhrer, S.: SHREC’10 track: non-rigid 3D shape retrieval. In: the 3rd Eurographics Conference on 3D Object Retrieval (SHREC2010), pp. 1–8. ACM (2010)
Bronstein, A.M., Bronstein, M.M., Castellani, U., Falcidieno, B., Fusiello, A., Godil, A., Guibas, L.J., Kokkinos, I., Lian, Z., Ovsjanikov, M., Patan, G., Spagnuolo, M., Toldo, R.: SHREC 2010: robust large-scale shape retrieval benchmark. In: The 3rd Eurographics Conference on 3D Object Retrieval (SHREC2010), pp. 71–78. ACM (2010)
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China (61173103, 61572099, 61320106008, 91230103, 61363048, 61262050, 61402300), National Science and Technology Major Project (2013ZX04005021, 2014ZX04001011), the Natural Science Foundation of Hebei Province (F2014210127), the Funded Projects for Introduction of Overseas Scholars of Hebei Province, and the Funds for Excellent Young Scholar of Shijiazhuang Tiedao University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, Y., Su, Z., Cao, J. et al. Harmonic mean normalized Laplace–Beltrami spectral descriptor. Vis Comput 32, 1097–1108 (2016). https://doi.org/10.1007/s00371-015-1172-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-015-1172-1