Skip to main content
Log in

Dynamic social formations of pedestrian groups navigating and using public transportation in a virtual city

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Most prior crowd simulations do not have groups of people moving in a social manner. In our work, we use a two-level steering system based on two classes: group agent and pedestrian agent. By interpolating the current and desired slot positions of the group agent according to formation templates, dynamic social group formations can be achieved and can also adapt to the width of passageways using our robust and optimized ray casting technique. Based on this interpolation approach, slot-locking keeps subgroups in a group shoulder-to-shoulder regardless of the current formation assuming sufficient surrounding space exists. At times pal social gestures between adjacent members may occur. We also introduce the social FIFO queue to be used in situations such as waiting for the bus. In the subway scene, we describe a seating strategy for passengers entering the subway car and being aware of your presence. In an immersive evaluation using an Oculus DK2 head-mounted display, participants validated the realism of dynamic social group behavior for navigation and making use of public transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. James, J.: The distribution of free-forming small group size. Am. Sociol. Rev. 18, 569–570 (1953). doi:10.2307/2087444

    Article  Google Scholar 

  2. Coleman, J.S., James, J.: The equilibrium size distribution of freely-forming groups. Sociometry 24(1), 36–45 (1961)

    Article  Google Scholar 

  3. Pelechano, N., Allbeck, J., Badler, N.: Virtual Crowds: Methods, Simulation, and Control. Morgan and Claypool Publishers, San Rafael (2008)

    Google Scholar 

  4. Thalmann, D., Musse, S.: Crowd Simulation, 2nd edn. Springer, London (2012)

    Google Scholar 

  5. Musse, S.R., Thalmann, D.: A hierarchical model for real time simulation of virtual human crowds. IEEE Trans. Vis. Computer Graph. 22(2), 152–164 (2001). doi:10.1109/2945.928167

    Article  Google Scholar 

  6. Musse, S.R.: Human crowd modeling with various levels of behaviour control. PhD thesis, EPFL, Lausanne, Switzerland (2000)

  7. Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in dense urban environments using local laws. In: Proceedings of Theory and Practice of Computer Graphics (TPCG 2003), pp. 122–129. (2003)

  8. Qiu, F., Hu, X.: Modeling group structures in pedestrian crowd simulation. Simul. Model. Practice Theory 18(2), 190–205 (2010). doi:10.1016/j.simpat.2009.10.005

    Article  Google Scholar 

  9. Niederberger, C., Gross, M.: Hierarchical and heterogeneous reactive agents for real-time applications. Computer Graph. Forum 22(3), 323–331 (2003). doi:10.1111/1467-8659.00679

    Article  MATH  Google Scholar 

  10. Hostetler, T., Kearney, J.: Strolling down the avenue with a few close friends. In: Proceedings of Eurographics Ireland Workshop, pp. 7–14 (2002)

  11. Peters, C., Ennis, C.: Modeling groups of plausible virtual pedestrians. IEEE Computer Graph. Appl. 29(4), 54–63 (2009). doi:10.1109/MCG.2009.69

    Article  Google Scholar 

  12. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behavior of pedestrian social groups and its impact on crowd dynamics. PloS One, 5(4) (2010). doi:10.1371/journal.pone.0010047

  13. Federici, M., Gorrini, A., Manenti, L., Vizzari, G.: Data collection for modeling and simulation: case study at the University of Milan-Bicocca. Lecture Notes in Computer Science, vol. 7495, pp. 699–708 (2012)

  14. Hocevar, R., Marson, F., Cassol, V., Braun, H., Bidarra, R., Musse, S.R.: From their environment to their behavior: a procedural approach to model groups of virtual agents. In: Proceedings of Intelligent Virtual Agents (IVA 2012), pp. 370–376. Springer, Berlin Heidelberg (2012)

  15. Karamouzas, I., Overmars, M.H.: Simulating and evaluating the local behavior of small pedestrian groups. IEEE Trans. Vis. Computer Graph. 18(3), 394–406 (2012). doi:10.1109/TVCG.2011.133

    Article  Google Scholar 

  16. Rojas, F.A., Yang, H.S.: Immersive Human-in-the-Loop HMD evaluation of dynamic group behavior in a pedestrian crowd simulation that uses group agent-based steering. In: Proceedings of Virtual Reality Continuum and Its Applications in Industry (VRCAI 2013), pp. 31–40. (2013). doi:10.1145/2534329.2534336

  17. Pedica, C., Vilhjálmsson, H.H.: Spontaneous avatar behavior for human territorality. Appl. Artif. Intell. 24(6), 575–593 (2010). doi:10.1080/08839514.2010.492165

    Article  Google Scholar 

  18. Pedica, C., Vilhjálmsson, H.H., Lárusdóttir, M.: Avatars in conversation: the importance of simulating territorial behavior. In: Proceedings of Intelligent Virtual Agents (IVA 2010), Lecture Notes in Computer Science, vol. 6356, pp. 336–342 (2010). doi:10.1007/978-3-642-15892-6_35

  19. Pedica, C., Vilhjálmsson, H.H.: Social perception and steering for online avatars. In: Proceedings of Intelligent Virtual Agents (IVA 2008), Lecture Notes in Computer Science, vol. 5208, pp. 104–116 (2008)

  20. Scheflen, A.E.: Human Territories: How We Behave in Space and Time. Prentice-Hall, New York (1976)

    Google Scholar 

  21. Kendon, A.: Conducting Interaction: Patterns of Behavior in Focused Encounters. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  22. Ennis, C., O’Sullivan, C.: Perceptually plausible formations for virtual conversers. Computer Anim. Virtual Worlds 23(3–4), 321–329 (2012). doi:10.1002/cav.1453

    Article  Google Scholar 

  23. Kamphuis, A., Overmars, M.H.: Finding paths for coherent groups using clearance. In: Proceedings of Symposium on Computer Animation (SCA 2004), ACM SIGGRAPH / Eurographics, 2004, pp. 19–28 (2004)

  24. Hsu, D., Kindel, R., Latombe, J.-C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res. 21(3), 233–255 (2002). doi:10.1177/027836402320556421

    Article  MATH  Google Scholar 

  25. LaValle, S., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001). doi:10.1177/02783640122067453

    Article  Google Scholar 

  26. Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). doi:10.1109/70.508439

    Article  Google Scholar 

  27. Rojas, F.A., Park, J.H., Yang, H.S.: Group agent-based steering for the realistic corner turning and group movement of pedestrians in a crowd simulation. In: Proceedings of Computer Animation and Social Agents (CASA 2013) (2013)

  28. Knabe, T.: Tore Knabe’s Blog. http://tore-knabe.com/virtual-reality#SubwayCar (2014). Accessed 28 Feb 2015

Download references

Acknowledgments

This crowd simulation is integrated into the city and subway scenes of PsyTech’s PHOBOS\({}^{\textregistered }\), a virtual reality platform being developed for the treatment of a wide range of phobias and anxiety disorders. It is funded by the IT R&D program of MSIP/KEIT [14-811-12-002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, F., Tarnogol, F. & Yang, H.S. Dynamic social formations of pedestrian groups navigating and using public transportation in a virtual city. Vis Comput 32, 335–345 (2016). https://doi.org/10.1007/s00371-015-1187-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1187-7

Keywords

Navigation