Abstract
Human visual attention system tends to be attracted to perceptual feature points on 3D model surfaces. However, purely geometric-based feature metrics may be insufficient to extract perceptual features, because they tend to detect local structure details. Intuitively, the perceptual importance degree of vertex is associated with the height of its geometry position between original model and a datum plane. So, we propose a novel and straightforward method to extract perceptually important points based on global height field. Firstly, we construct spectral domain using Laplace–Beltrami operator, and we perform spectral synthesis to reconstruct a rough approximation of the original model by adopting low-frequency coefficients, and make it as the 3D datum plane. Then, to build global height field, we calculate the Euclidean distance between vertex geometry position on original surface and the one on 3D datum plane. Finally, we set a threshold to extract perceptual feature vertices. We implement our technique on several 3D mesh models and compare our algorithm to six state-of-the-art interest points detection approaches. Experimental results demonstrate that our algorithm can accurately capture perceptually important points on arbitrary topology 3D model.














Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57. Springer (2003)
Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 325–334. ACM Press/Addison-Wesley Publishing Co. (1999)
Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 659–666. ACM (2005)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 373–380. IEEE (2009)
Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Gr. (TOG) 25(1), 130–150 (2006)
Shilane, P., Funkhouser, T.: Distinctive regions of 3d surfaces. ACM Trans. Gr. (TOG) 26(2), 7 (2007)
Kim, Y., Varshney, A., Jacobs, D.W., Guimbretiere, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. (TAP) 7(2), 12 (2010)
Novatnack, J., Nishino, K.: Scale-dependent 3d geometric features. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE (2007)
Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Computer Graphics Forum, vol. 27, pp. 643–652. Wiley Online Library (2008)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)
Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009)
Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L., Kokkinos, I., Murino, V., Ovsjanikov, M., et al.: Shrec 2010: robust feature detection and description benchmark. Proc. 3DOR 2(5), 6 (2010)
Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P.,Vandermeulen, D., Zaharescu, A., Zobel, V.: Shrec 2011: robust feature detection and description benchmark. arXiv:1102.4258
Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010)
Laga, H.: Data-driven approach for automatic orientation of 3d shapes. Vis. Comput. 27(11), 977–989 (2011)
Godil, A., Wagan, A.I.: Salient local 3d features for 3d shape retrieval. In: IS&T/SPIE Electronic Imaging, pp. 1–8. International Society for Optics and Photonics (2011)
Miao, Y., Feng, J., Pajarola, R.: Visual saliency guided normal enhancement technique for 3d shape depiction. Comput. Gr. 35(3), 706–712 (2011)
Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the Harris operator for interest point detection on 3d meshes. Vis. Comput. 27(11), 963–976 (2011)
Sipiran, I., Bustos, B.: Key-components: detection of salient regions on 3d meshes. Vis. Comput. 29(12), 1319–1332 (2013)
Litman, R., Bronstein, A.M., Bronstein, M.M.: Diffusion-geometric maximally stable component detection in deformable shapes. Comput. Gr. 35(3), 549–560 (2011)
Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3d interest point detection techniques via human-generated ground truth. Vis. Comput. 28(9), 901–917 (2012)
Wu, J., Shen, X., Zhu, W., Liu, L.: Mesh saliency with global rarity. Gr. Models 75(5), 255–264 (2013)
Song, R., Liu, Y., Martin, R.R., Rosin, P.L.: 3d point of interest detection via spectral irregularity diffusion. Vis. Comput. 29(6–8), 695–705 (2013)
Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co. (2000)
Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. ACM Trans. Gr. (TOG) 25(3), 1057–1066 (2006)
Rong, G., Cao, Y., Guo, X.: Spectral mesh deformation. Vis. Comput. 24(7–9), 787–796 (2008)
Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. In: Computer Graphics Forum, pp. 251–260, vol. 27. Wiley Online Library (2008)
Öztireli, A.C., Alexa, M., Gross, M.: Spectral sampling of manifolds. ACM Trans. Gr. (TOG) 29(6), 168 (2010)
Lévy, B., Zhang, H.R.: Spectral mesh processing. In: ACM SIGGRAPH 2010 Courses, p. 8. ACM (2010)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)
Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore, Maryland (2012)
Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3d scanning of large statues. In: Proceedings of SIGGRAPH 2000 (July), pp. 131–144 (2000)
Hugues, H.: Progressive meshes. In: Computer Graphics (SIGGRAPH 96 Proceedings), pp. 99–108 (1996)
Acknowledgments
This research is supported by Natural Science Foundation of China (NSFC) (Nos. 61232011, 61320106008), NSFC-Guangdong Joint Fund (No. U1135003), National Natural Science Foundation of China (No. 61502541). The 3D models are courtesy of Stanford University, Princeton University and the Aim@Shape.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, Y., Lin, S., Su, Z. et al. A 3D model perceptual feature metric based on global height field. Vis Comput 32, 1151–1164 (2016). https://doi.org/10.1007/s00371-015-1199-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-015-1199-3