Skip to main content

Advertisement

Log in

A 3D model perceptual feature metric based on global height field

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Human visual attention system tends to be attracted to perceptual feature points on 3D model surfaces. However, purely geometric-based feature metrics may be insufficient to extract perceptual features, because they tend to detect local structure details. Intuitively, the perceptual importance degree of vertex is associated with the height of its geometry position between original model and a datum plane. So, we propose a novel and straightforward method to extract perceptually important points based on global height field. Firstly, we construct spectral domain using Laplace–Beltrami operator, and we perform spectral synthesis to reconstruct a rough approximation of the original model by adopting low-frequency coefficients, and make it as the 3D datum plane. Then, to build global height field, we calculate the Euclidean distance between vertex geometry position on original surface and the one on 3D datum plane. Finally, we set a threshold to extract perceptual feature vertices. We implement our technique on several 3D mesh models and compare our algorithm to six state-of-the-art interest points detection approaches. Experimental results demonstrate that our algorithm can accurately capture perceptually important points on arbitrary topology 3D model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57. Springer (2003)

  2. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 325–334. ACM Press/Addison-Wesley Publishing Co. (1999)

  3. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 659–666. ACM (2005)

  4. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  5. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 373–380. IEEE (2009)

  6. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Gr. (TOG) 25(1), 130–150 (2006)

    Article  Google Scholar 

  7. Shilane, P., Funkhouser, T.: Distinctive regions of 3d surfaces. ACM Trans. Gr. (TOG) 26(2), 7 (2007)

    Article  Google Scholar 

  8. Kim, Y., Varshney, A., Jacobs, D.W., Guimbretiere, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. (TAP) 7(2), 12 (2010)

    Google Scholar 

  9. Novatnack, J., Nishino, K.: Scale-dependent 3d geometric features. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8. IEEE (2007)

  10. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Computer Graphics Forum, vol. 27, pp. 643–652. Wiley Online Library (2008)

  11. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)

  12. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009)

    Article  Google Scholar 

  13. Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L., Kokkinos, I., Murino, V., Ovsjanikov, M., et al.: Shrec 2010: robust feature detection and description benchmark. Proc. 3DOR 2(5), 6 (2010)

    Google Scholar 

  14. Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P.,Vandermeulen, D., Zaharescu, A., Zobel, V.: Shrec 2011: robust feature detection and description benchmark. arXiv:1102.4258

  15. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010)

    Article  Google Scholar 

  16. Laga, H.: Data-driven approach for automatic orientation of 3d shapes. Vis. Comput. 27(11), 977–989 (2011)

    Article  Google Scholar 

  17. Godil, A., Wagan, A.I.: Salient local 3d features for 3d shape retrieval. In: IS&T/SPIE Electronic Imaging, pp. 1–8. International Society for Optics and Photonics (2011)

  18. Miao, Y., Feng, J., Pajarola, R.: Visual saliency guided normal enhancement technique for 3d shape depiction. Comput. Gr. 35(3), 706–712 (2011)

    Article  Google Scholar 

  19. Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the Harris operator for interest point detection on 3d meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  20. Sipiran, I., Bustos, B.: Key-components: detection of salient regions on 3d meshes. Vis. Comput. 29(12), 1319–1332 (2013)

    Article  Google Scholar 

  21. Litman, R., Bronstein, A.M., Bronstein, M.M.: Diffusion-geometric maximally stable component detection in deformable shapes. Comput. Gr. 35(3), 549–560 (2011)

    Article  Google Scholar 

  22. Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3d interest point detection techniques via human-generated ground truth. Vis. Comput. 28(9), 901–917 (2012)

    Article  Google Scholar 

  23. Wu, J., Shen, X., Zhu, W., Liu, L.: Mesh saliency with global rarity. Gr. Models 75(5), 255–264 (2013)

    Article  Google Scholar 

  24. Song, R., Liu, Y., Martin, R.R., Rosin, P.L.: 3d point of interest detection via spectral irregularity diffusion. Vis. Comput. 29(6–8), 695–705 (2013)

    Article  Google Scholar 

  25. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co. (2000)

  26. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. ACM Trans. Gr. (TOG) 25(3), 1057–1066 (2006)

    Article  Google Scholar 

  27. Rong, G., Cao, Y., Guo, X.: Spectral mesh deformation. Vis. Comput. 24(7–9), 787–796 (2008)

    Article  Google Scholar 

  28. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. In: Computer Graphics Forum, pp. 251–260, vol. 27. Wiley Online Library (2008)

  29. Öztireli, A.C., Alexa, M., Gross, M.: Spectral sampling of manifolds. ACM Trans. Gr. (TOG) 29(6), 168 (2010)

    Google Scholar 

  30. Lévy, B., Zhang, H.R.: Spectral mesh processing. In: ACM SIGGRAPH 2010 Courses, p. 8. ACM (2010)

  31. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore, Maryland (2012)

    MATH  Google Scholar 

  33. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3d scanning of large statues. In: Proceedings of SIGGRAPH 2000 (July), pp. 131–144 (2000)

  34. Hugues, H.: Progressive meshes. In: Computer Graphics (SIGGRAPH 96 Proceedings), pp. 99–108 (1996)

Download references

Acknowledgments

This research is supported by Natural Science Foundation of China (NSFC) (Nos. 61232011, 61320106008), NSFC-Guangdong Joint Fund (No. U1135003), National Natural Science Foundation of China (No. 61502541). The 3D models are courtesy of Stanford University, Princeton University and the Aim@Shape.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Lin, S., Su, Z. et al. A 3D model perceptual feature metric based on global height field. Vis Comput 32, 1151–1164 (2016). https://doi.org/10.1007/s00371-015-1199-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1199-3

Keywords

Navigation