Skip to main content

Advertisement

Log in

An evolutionary learning based fuzzy theoretic approach for salient object detection

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Human attention tends to get focused on the most prominent components of a scene which are in sharp contrast with the background. These are termed as salient regions. The human brain perceives an object to be salient based on various features like the relative intensity, spread of the region, color contrast with the background, size and position within an image. Since these features vary widely, no crisp thresholds can be specified for an automatic salient region detector. In this paper we present a rule based system which uses a set of fuzzy features to mark out the salient region in an image. A genetic algorithm based evolutionary system is used to learn the rules from the training images. Extensive comparisons with the state-of-the-art methods in terms of precision, recall and F-measure are made on two different publicly available datasets to prove the effectiveness of this approach. The application of the proposed salient object detection approach is shown in non-photorealistic rendering, perception based image compression and context aware retargeting applications with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. MacEvoy B (2005) CIELAB \({\rm a}^{*} {\rm b}^{*}\) plane. http://www.handprint.com/HP/WCL/labwheel.html. Accessed 5th March 2016

  2. Achanta, R., Estrada, F.J., Wils, P., Susstrunk, S.: Salient region detection and segmentation. In: ICVS, pp. 66–75 (2008)

  3. Achanta, R., Susstrunk, S.: Saliency detection for content-aware image resizing. In: ICIP, pp. 1005–1008 (2009)

  4. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)

  5. Achanta, R., Susstrunk, S.: Saliency detection using maximum symmetric surround. In: ICIP, pp. 2653–2656 (2010)

  6. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR (2010)

  7. Aytekin, C., Kiranyaz, S., Gabbouj, M.: Automatic object segmentation by quantum cuts. In: International Conference on Pattern Recognition, pp. 112–117 (2014)

  8. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark, CoRR (2015). arXiv:1501.02741

  9. Bruce, N.: Features that draw visual attention: an information theoretic perspective. Neurocomputing 65–66, 125–133 (2005)

    Article  Google Scholar 

  10. Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. In: NIPS, vol. 18, pp. 155–162 (2006)

  11. Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: an information theoretic approach. J. Vis. 9(3), 1–24 (2009)

    Article  Google Scholar 

  12. Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV, pp. 914–921 (2011)

  13. Chen, L., Fan, X., Ma, W., Zhang, H., Zhou, H.: A visual attention model for adapting images on small displays. In: MMM03, pp. 353–364 (2003)

  14. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.-M.: Global contrast based salient region detection. In: IEEE TPAMI (2015)

  15. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition (IEEE CVPR), pp. 409–416 (2011)

  16. Cheng, M.M., Warrell, C.H., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: IEEE ICCV, pp. 1529–1536 (2013)

  17. Cheng, M.M., Hu, S.M., Mitra, N.J., Huang, X.: SalientShape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014). doi:10.1007/s00371-013-0867-4

    Article  Google Scholar 

  18. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 769–776 (2002)

  19. Dhar, S., Ordonez, V., Berg, T.L.: High level describable attributes for predicting aesthetics and interestingness. In: CVPR, pp. 1657–1664 (2011)

  20. Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially weighted dissimilarity. In: CVPR, pp. 473–480 (2011)

  21. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4):11, 1–20 (2013)

  22. Feng, J., Wei, Y., Tao, L., Zhang, C., Sun, J.: Salient object detection by composition. In: ICCV, pp. 1028–1035 (2011)

  23. Fu, K., Gong, C., Yang, J., Zhou, Y.: Salient object detection via color contrast and color distribution. In: 2012 IEEE 11th Asian Conference on Computer Vision (ACCV), IEEE (2012)

  24. Goferman, S., Zelnik-Manor, L., Tal, A.: Context aware saliency detection. In: CVPR, pp. 2376–2383 (2010)

  25. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE TPAMI 34(10), 1915–1926 (2012)

  26. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2007)

  27. Heckbert, P.: Color image quantization for frame buffer display. Comput. Graph. 16(3), 207–307 (1982)

  28. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. . IEEE TPAMI 34(1), 194–201 (2012)

  29. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)

  30. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis? In: IEEE TPAMI (1998)

  31. Jang, J.S.R., Sun, C.T., Mizutani, E.: Fuzzy set theory. In: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, pp. 37–86. Pearson Prentice Hall, USA (1997). ISBN 81-317-1109-9

  32. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV (2013)

  33. Jiang, H., Wang, J., Yuan, Z., et al.: Automatic salient object segmentation based on context and shape prior. BMVC 3(4), 110.1–110.12 (2011)

  34. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminative regional feature integration approach. In: IEEE CVPR, pp. 2083–2090 (2013)

  35. Kanan, C., Cottrell, G.W.: Robust classification of objects, faces, and flowers using natural image statistics. In: CVPR, pp. 2472–2479 (2010)

  36. Kapoor, A., Biswas, K.K.: A case-based reasoning approach for detection of salient regions in images. In: ICVGIP, pp. 48–55 (2010)

  37. Kapoor, A., Biswas, K.K., Hanmandlu, M.: Salient object detection using a fuzzy theoretic approach. In: ICVGIP, Article No. 9 (2012)

  38. Li, N., Ye, J., Ji, H., Ling, H., Ju, Y.: Saliency detection on light field. In: CVPR (2014)

  39. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: ICCV (2013)

  40. Liu, T., Sun, J., Zheng, J., Tang, X., Shum, H.: Learning to detect a salient object. In: CVPR, pp. 1–8 (2007)

  41. Ma, M., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. In: Proc. of the 11th ACM Int. conference on Multimedia (2003)

  42. Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: ICCV, pp. 2232–2239 (2009)

  43. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: CVPR (2013)

  44. Margolin, R., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. Vis. Comput. 29(5), 381–392 (2013)

    Article  Google Scholar 

  45. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: CVPR, pp. 433–440 (2011)

  46. Nilsson, M., Nordberg, J., Claesson, T.: Face detection using local smqt features and split up snow classifier. In: ICASSP, pp. 1222–1239 (2007)

  47. Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: IEEE CVPR, pp. 733–740 (2012)

  48. Rahtu, E., Kannala, J., Salo, M., Heikkila, J.: Segmenting salient objects from images and videos. In: ECCV (2010)

  49. Roth, D., Yang, M., Ahuja, N.: A snow-based face detector. In: NIPS, pp. 855–861 (2000)

  50. Rong, M.: Perception-based multi-quality image compression for efficient transmission. In: ISPACS, pp. 817–820 (2006)

  51. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15.1–27 (2009)

  52. Siva, P., Russell, C., Xiang, T., Agapito, L.: Looking beyond the image: unsupervised learning for object saliency and detection. In: CVPR (2013)

  53. Tamara, L.: Finding iconic images. In: Internet Vision Workshop at CVPR (2009)

  54. Tavakoli, H.R., Rahtu, E., Heikkila, J.: Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: Image Analysis—17th Scandinavian Conference, SCIA’11, Ystad, pp. 666–675 (2011)

  55. Wandell, B.: Foundations of Vision. Sinauer, Sunderland (1995)

    Google Scholar 

  56. Watson, A.B.: Image compression using the discrete cosine transform. Math. J. 4(1), 81–88 (1994)

    MathSciNet  Google Scholar 

  57. Wei, L.S., Sang, N., Wang, Y., Wang, D., Wang, F.: Variable resolution image compression based on a model of visual attention. In: Proc. of SPIE, vol. 7495 74950P-1 (2009)

  58. Wei, W., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Computer Vision ECCV’12, pp. 29–42. Springer, New York (2012)

  59. Xie, Y., Lu, H., Yang, M.-H.: Bayesian saliency via low and mid level cues. IEEE TIP 22(5), 1689–1698 (2013)

  60. Xu, M., Zhang, H.: Saliency detection with color contrast based on boundary information and neighbors. Vis. Comput. (2014)

  61. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)

  62. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)

    Article  Google Scholar 

  63. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR (2013)

  64. Yu, S.X., Lisin, D.A.: Image compression based on visual saliency at individual scales. In: Advances in Visual Computing, 5th International Symposium, ISVC Proceedings, Part I, pp. 157–166 (2009)

  65. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatio temporal cues. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, ACM’06, pp. 815–824 (2006)

  66. Zhang, J., Sclaroff, S.: Saliency detection: a boolean map approach. In: ICCV, pp. 153–160 (2013)

  67. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: A Bayesian framework for saliency using natural statistics. J. Vis. 8(7):32, 1–20 (2008)

  68. Zhou, L., Fu, K., Li, y, Qiao, Y., JiangHe, X., Yang, J.: Bayesian salient object detection based on saliency driven clustering. Signal Process. Image Commun. 29, 434–447 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Kapoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, A., Biswas, K.K. & Hanmandlu, M. An evolutionary learning based fuzzy theoretic approach for salient object detection. Vis Comput 33, 665–685 (2017). https://doi.org/10.1007/s00371-016-1216-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1216-1

Keywords

Navigation