Abstract
Motivated by the recent success of deep networks in providing effective and abstract image representations, in this paper, a multi-layer architecture called the multi-layer local energy patterns (ML-LEP) is proposed for texture representation and classification. The proposed approach follows a multi-layer convolutional neural network paradigm and is built upon the single-layer local energy pattern (LEP) approach, a statistical histogram-based method for texture representation. An important aspect of the proposed multi-layer method compared to other deep convolutional architectures is bypassing the computationally expensive learning stage using fixed filters. As such, the proposed training-free network circumvents the need for large data for learning system parameters. An extensive investigation is carried out to determine the merits of different nonlinear operators in the proposed architecture. For this purpose, different nonlinearities including an energy-based nonlinearity, the absolute operator as well as the rectifier functions are extensively investigated and compared against each other. Extensive experiments conducted on three challenging databases of KTH-TIPS, KTH-TIPS2-a and the UIUC indicate that the extension of the LEP method to the multi-layer LEP is effective and leads to better performance. Moreover, the proposed ML-LEP approach is compared to several other well-known descriptors in the field, achieving the best reported performance on the KTH-TIPS and the KTH-TIPS2-a databases despite being training-free.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-016-1220-5/MediaObjects/371_2016_1220_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-016-1220-5/MediaObjects/371_2016_1220_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-016-1220-5/MediaObjects/371_2016_1220_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-016-1220-5/MediaObjects/371_2016_1220_Fig4_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-016-1220-5/MediaObjects/371_2016_1220_Fig5_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00371-016-1220-5/MediaObjects/371_2016_1220_Fig6_HTML.jpg)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ji, Q., Engel, J., Craine, E.: Texture analysis for classification of cervix lesions. IEEE Trans. Med. Imaging 19(11), 1144–1149 (2000)
Wang, X.F., Huang, D.S., Du, J.X., Xu, H., Heutte, L.: Classification of plant leaf images with complicated background. Appl. Math. Comput. 205(2), 916–926 (2008)
Tsai, D.M., Huang, T.Y.: Automated surface inspection for statistical textures. Image Vis. Comput. 21(4), 307–323 (2003)
Santos, J.A.D., Gosselin, P.H., Philipp-Foliguet, S., Torres, R.D.S., Falao, A.X.: Multiscale classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(10), 3764–3775 (2012)
Huang, C.R., Chen, C.S., Chung, P.C.: Contrast context histogram: an efficient discriminating local descriptor for object recognition and image matching. Pattern Recogn. 41(10), 3071–3077 (2008)
Zhu, Y., Tan, T., Wang, Y.: Font recognition based on global texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1192–1200 (2001)
Hanbay, K., Talu, M.F.: Segmentation of SAR images using improved artificial bee colony algorithm and neutrosophic set. Appl. Soft Comput. 21, 433–443 (2014)
Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)
Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Tan, X.Y., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn. 43(3), 706–719 (2010)
Guo, Z., Zhang, L., Zhang, D., Zhang, S.: Rotation invariant texture classification using adaptive LBP with directional statistical features. In: International Conference on Image Processing (ICIP), pp. 285–288 (2010)
Guo, Z.H., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
Hong, X., Zhao, G., Pietikainen, M., Chen, X.: Combining lbp difference and feature correlation for texture description. IEEE Trans. Image Process. 23(6), 2557–2568 (2014)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)
Varma, M., Garg, R.: Locally invariant fractal features for statistical texture classification. In: International Conference on Computer Vision, pp. 1–8 (2007)
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)
Zhang, J., Zhao, H., Liang, J.: Continuous rotation invariant local descriptors for texton dictionary-based texture classification. Comput. Vis. Image Underst. 117(1), 56–75 (2013)
Crosier, M., Griffin, L.D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88(3), 447–460 (2010)
Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705–1720 (2010)
Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)
Shrivastava, N., Tyagi, V.: An effective scheme for image texture classification based on binary local structure pattern. Visual Comput. 30(11), 1223–1232 (2014)
Wu, X., Sun, J.: Joint-scale LBP: a new feature descriptor for texture classification. Visual Comput., 1–13 (2015). doi:10.1007/s00371-015-1202-z
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649 (2012)
Zhou, S., Chen, Q., Wang, X.: Active deep learning method for semi-supervised sentiment classification. Neurocomputing 120, 536–546 (2013)
Zhong, S.-h., Liu, Y., Liu, Y.: Bilinear deep learning for image classification. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 343–352 (2011)
Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? (2014). arXiv:1404.3606
Socher, R., Huval, B., Bath, B., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep learning for 3d object classification. In: Advances in Neural Information Processing Systems, pp. 665–673 (2012)
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Bengio, Y., Goodfellow, I.J., Courville, A.: Deep Learning. http://www.iro.umontreal.ca/~bengioy/dlbook (2015)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 9, 891–906 (1991)
Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Computer Vision-ECCV 2004. pp. 253–266. Springer, New York (2004)
Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: International Conference on Computer Vision, pp. 1597–1604 (2005)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)
Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition. CVPR 2005. IEEE Computer Society Conference on 2005, pp. 886–893. IEEE (2005)
Quan, Y., Xu, Y., Sun, Y., Luo, Y.: Lacunarity analysis on image patterns for texture classification. In: International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 160–167 (2014)
Quan, Y., Xu, Y., Sun, Y.: A distinct and compact texture descriptor. Image Vis. Comput. 32(4), 250–259 (2014)
Xu, Y., Ji, H., Fermüller, C.: Viewpoint invariant texture description using fractal analysis. Int. J. Comput. Vis. 83(1), 85–100 (2009)
Ji, H., Yang, X., Ling, H., Xu, Y.: Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Trans. Image Process. 22(1), 286–299 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Amirolad, A., Arashloo, S.R. & Amirani, M.C. Multi-layer local energy patterns for texture representation and classification. Vis Comput 32, 1633–1644 (2016). https://doi.org/10.1007/s00371-016-1220-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-016-1220-5