Skip to main content

Advertisement

Log in

New advances for haptic rendering: state of the art

  • Survey
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

During the last decade, haptics has been a new emerged and interesting subject for many researchers, which can be classified into three topics such as human haptics, machine haptics and computer haptics. Haptic rendering is the most important technology for computer haptics, which means the process of calculating the force or tactile feedback to give the user a sense of touch or interaction with the virtual object. This paper provides a detailed and comprehensive survey of the methods and technologies for haptic rendering in the past 5 years, mainly from 2010–2015, including haptic rendering for rigid–rigid interaction, haptic rendering for rigid–deformable interaction, haptic rendering for rigid–fluid interaction, haptic rendering for image- and video-based interaction, and texture and tactile rendering. The main research efforts and the typical algorithms are discussed, and the new ideas and research progresses are investigated, then the conclusions and future directions are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varalakshmi, B.D., Thriveni, J., Venugopal, K.R., Patnaik, L.M.: Haptics: state of the art survey. Int. J. Comput. Sci. Issues 9(3), 234–244 (2012)

    Google Scholar 

  2. Lin, M.C., Miguel, A.O.: Haptic Rendering: Foundations, Algorithms, and Applications. A K Peters/CRC, Boca Raton (2008)

  3. Gao, Z., Gibson, I.: Haptic sculpting of multi-resolution B-spline surfaces with shaped tools. Comput. Aid. Des. 38(6), 661–676 (2006)

    Article  Google Scholar 

  4. Wu, J., Wang, D., Wang, C.C.L., Zhang, Y.: Toward stable and realistic haptic interaction for tooth preparation simulation. J. Comput. Inf. Sci. Eng. 10(2), 1–9 (2010)

    Article  Google Scholar 

  5. Appleyard, M.N., Mosse, C.A., Mills, T.N., Bell, G.D., Castillo, F.D., Swain, C.P.: The measurement of forces exerted during colonoscopy. Gastrointest. Endosc. 52(2), 237–240 (2000)

    Article  Google Scholar 

  6. Li, Y., Tang, M., Zhang, S., Kim, Y. J.: Six-degree-of-freedom haptic rendering using translational and generalized penetration depth computation. In: Proceedings of the IEEE World Haptic Conference, pp. 289–294 (2013)

  7. Li, Y., Zhang, Y., Ye, X., Zhang, S.: Haptic rendering method based on generalized penetration depth computation. Signal Process. 120(3), 714–720 (2016)

    Article  Google Scholar 

  8. Hou, X., Sourina, O.: Stable adaptive algorithm for Six Degrees-of-Freedom haptic rendering in a dynamic environment. Vis. Comput. 29(10), 1063–1075 (2013)

    Article  Google Scholar 

  9. Wang, D., Zhang, X., Zhang, Y., Xiao, J.: Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Trans. Haptics 6(2), 167–180 (2013)

    Article  Google Scholar 

  10. Wang, Q., Chen, H., Wu, W., Qin, J., Heng, P.-A.: Impulse-based rendering methods for haptic simulation of bone-burring. IEEE Trans. Haptics 5(4), 344–355 (2012)

    Article  Google Scholar 

  11. Moustakas, K.: 6-DoF haptic rendering using distance maps over implicit representations. Multimed Tools Appl. 75(8), 4543–4557 (2016)

    Article  Google Scholar 

  12. Talvas, A., Marchal, M., Lecuyer, A.: The god-finger method for improving 3D interaction with virtual objects through simulation of contact area. In: IEEE Symposium on 3D User Interfaces, pp. 111–114 (2013)

  13. Adams, R., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Automat. 15(3), 465–474 (1999)

    Article  Google Scholar 

  14. Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3146–3151 (1995)

  15. Ortega, M., Redon, S., Coquillart, S.: A Six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties. IEEE Trans. Vis. Comput. Gr. 13(3), 458–469 (2007)

    Article  Google Scholar 

  16. Mirtich, B., Canny, J.: Impulse-based simulation of rigid bodies. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics, pp. 181–188 (1995)

  17. Kim, L., Kyrikou, A., Desbrun, M., Sukhatme, G.: An implicit-based haptic rendering technique. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots, pp. 2943–2948 (2002)

  18. Zhang, X., Sun, W., Song, A.: Layered rhombus-chain-connected model for real-time haptic rendering. Artif. Intell. Rev. 41(1), 49–65 (2014)

    Article  Google Scholar 

  19. Tian, Y., Yang, Y., Guo, X., Prabhakaran, B.: Haptic simulation of needle-tissue interaction based on shape matching. In: Proceedings of IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE 2014), pp. 1–6 (2014)

  20. Hem, X.-J., Choi, K.-S.: Using analytical force model for efficient deformation simulation and haptic rendering of soft objects. Multimed. Tools Appl. 74(6), 1823–1844 (2015)

    Article  Google Scholar 

  21. Neubauer, A., Brooks, R., Brouwer, I., Debergue, P., Laroche, D.: Haptic collision handling for simulation of transnasal surgery. Comput. Anim. Virtual Worlds 24(2), 127–141 (2014)

    Article  Google Scholar 

  22. Niroomandi, S., Gonzalez, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., Chinesta, F.: Real-time simulation of biological soft tissues: a PGD approach. Int. J. Numer. Methods Biomed. Eng. 29(5), 586–600 (2013)

    Article  MathSciNet  Google Scholar 

  23. Gonzaleza, D., Alfaro, I., Quesada, C., Cueto, E., Chinesta, F.: Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput. Methods Appl. Mech. Eng. 283(1), 210–223 (2015)

    Article  Google Scholar 

  24. Wang, D., Shi, Y., Liu, S., Zhang, Y., Xiao, J.: Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Trans. Haptics 7(1), 48–60 (2014)

    Article  Google Scholar 

  25. Barbic, J., James, D.L.: Six-DoF haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans. Haptics 1(1), 39–52 (2008)

    Article  Google Scholar 

  26. Mafi, R., Sirouspour, S., Mahdavikhah, B., Moody, B., Elizeh, K., Kinsman, A.B., Nicolici, N.: A parallel computing platform for real-time haptic interaction with deformable bodies. IEEE Trans. Haptics 3(3), 211–223 (2010)

    Article  Google Scholar 

  27. Peterlı’k, I., Nouicer, M., Duriez, C., Cotin, S., Kheddar, A.: Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Trans. Haptics 4(3), 175–187 (2011)

    Article  Google Scholar 

  28. Knott, T.C., Kuhlena, T.W.: Accurate and adaptive contact modeling for multi-rate multi-point haptic rendering of static and deformable environments. Comput. Gr. 57(6), 68–80 (2016)

    Article  Google Scholar 

  29. Li, Z.Y.: Haptic dissection of deformable objects using extended finite element method. Master thesis, School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa (2014)

  30. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Gr. 5(1), 62–73 (1999)

    Article  MATH  Google Scholar 

  31. Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. Comput. Gr. Forum 20(3), 349–358 (2001)

    Article  Google Scholar 

  32. Altomonte, M., Zerbato, D., Botturi, D., Fiorini, P.: Simulation of deformable environment with haptic feedback on GPU. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3359–3364 (2008)

  33. Dobashi, Y., Sato, M., Hasegawa, S., Yamamoto, T., Kato, M., Nishita, T.: A Fluid resistance map method for real-time haptic interaction with fluids. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology, pp. 91–99 (2006)

  34. Yang, M., Zhou, Z., Safonova, A., Kuchenbecker, K. J.: A GPU-Based approach for real-time haptic rendering of 3D fluids. In: SIGGRAPH Asia Sketch, pp. 182–182 (2009)

  35. Baxter, W., Lin, M.C.: Haptic interaction with fluid media. In: Proceedings of Graphics Interface, pp. 81–88 (2004)

  36. Cirio, G., Marchal, M., Hillaire, S., Lecuyer, A.: Six degrees-of-freedom haptic interaction with fluids. IEEE Trans. Vis. Comput. Gr. 17(11), 1714–1727 (2011)

    Article  Google Scholar 

  37. Cirio, G., Marchal, M., Lecuyer, A., Jeremy, R.C.: Vibrotactile rendering of splashing fluids. IEEE Trans. Haptics 6(1), 117–122 (2013)

    Article  Google Scholar 

  38. Wang, Z., Wang, Y.: Haptic interaction with fluid based on smooth particles and finite elements. In: ICCSA, pp. 808–823 (2014)

  39. Hover, R., Kosa, G., Szekely, G., Harders, M.: Data-Driven haptic rendering—from viscous fluids to viscoelastic solids. IEEE Trans. Haptics 2(1), 15–27 (2009)

    Article  Google Scholar 

  40. Rasool, S., Sourin, A.: Tangible images. In: SIGGRAPH Asia Sketches, pp. 1–2 (2011)

  41. Rasool, S., Sourin, A.: Image-driven virtual simulation of arthroscopy. Vis. Comput. 29(5), 333–344 (2013)

    Article  Google Scholar 

  42. Xia, P., Sourin, A.: Design and implementation of a haptics based venipuncture simulation and training system. In: Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 25–30 (2012)

  43. Rasool, S., Sourin, A., Xia, P., Weng, B., Kagda, F.: Towards hand-eye coordination training in virtual knee arthroscopy. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 17–26 (2013)

  44. Zhang, X., Sourin, A.: Image-inspired haptic interaction. Comput. Anim. Virtual Worlds 26(3–4), 311–319 (2015)

    Article  Google Scholar 

  45. Ryden, F., Chizeck, H. J.: A Method for constraint-based six degree-of-freedom haptic interaction with streaming point clouds. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2345–2351 (2013)

  46. Ryden, F., Chizeck, H.J.: A proxy method for real-time 3-DoF haptic rendering of streaming point cloud data. IEEE Trans. Haptics 6(3), 257–267 (2013)

    Article  Google Scholar 

  47. Hirota, K., Hirose, M.: Simulation and presentation of curved surface in virtual reality environment through surface display. In: Proceedings of the IEEE Virtual Reality Annual International Symposium, pp. 211–216 (1995)

  48. Bordegoni, M., Ferrise, F., Covarrubias, M., Antolini, M.: Geodesic spline interface for haptic curve rendering. IEEE Trans. Haptics 4(2), 111–121 (2011)

    Article  Google Scholar 

  49. Cugini, U., Bordegoni, M.: Touch and design: novel haptic interfaces for the generation of high quality surfaces for industrial design. Vis. Comput. 23(4), 233–246 (2007)

    Article  Google Scholar 

  50. Bordegoni, M., Cugini, U.: The role of haptic technology in the development of aesthetic driven products. J. Comput. Inf. Sci. Eng. 8(4), 1–10 (2008)

    Article  Google Scholar 

  51. Bordegoni, M., Ferrise, F., Covarrubias, M., Antolini, M.: Geodesic spline interface for haptic curve rendering. IEEE Trans. Haptics 4(2), 111–121 (2011)

    Article  Google Scholar 

  52. Lang, J., Andrews, S.: Measurement-based modeling of contact forces and textures for haptic rendering. IEEE Trans. Vis. Comput. Gr. 17(3), 380–391 (2011)

    Article  Google Scholar 

  53. Sierra, J., Pai, D.: Haptic texturing-a stochastic approach. In: IEEE International Conference on Robotics and Automation, pp. 557–562 (1996)

  54. Otaduy, M.A., Lin, M.C.: A perceptually-inspired force model for haptic texture rendering. In: Proceedings of 1st Symposium on Applied perception in graphics and visualization, pp. 123–126 (2004)

  55. Li, J., Song, A., Zhang, X.: Haptic texture rendering using single texture image. In: International Symposium on Computational Intelligence and Design, pp. 7–10 (2010)

  56. Culbertson, H., Unwin, J., Kuchenbecker, K.J.: Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7(3), 381–393 (2014)

    Article  Google Scholar 

  57. Culbertson, H., Delgado, J. J. L., Kuchenbecker, K. J.: One hundred data-driven haptic texture models and open-source methods for rendering on 3D objects. In: IEEE Haptics Symposium, pp. 319–325 (2014)

  58. Nadia, G.-H., Tsagarakis, N.G., Caldwell, D.G.: Feeling through tactile displays: a study on the effect of the array density and size on the discrimination of tactile patterns. IEEE Trans. Haptics 4(2), 100–110 (2011)

    Article  Google Scholar 

  59. Ahmaniemi, T., Marila, J., Lantz, V.: Design of dynamic vibrotactile textures. IEEE Trans. Haptics 3(4), 245–256 (2010)

    Article  Google Scholar 

  60. Ioannis, S., Nadia, G.-H., Nikos, G.T., Darwin, G.C.: A high performance tactile feedback display and its integration in teleoperation. IEEE Trans. Haptics 5(3), 252–263 (2012)

    Article  Google Scholar 

  61. Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010)

    Article  Google Scholar 

  62. Altinsoy, M.E., Merchel, S.: Electrotactile feedback for handheld devices with touch screen and simulation of roughness. IEEE Trans. Haptics 5(1), 6–13 (2012)

    Article  Google Scholar 

  63. http://www.bulletphysics.org/Bullet/phpBB3/. Accessed 10 Aug 2016

  64. https://developer.nvidia.com/gameworks-physx-overview. Accessed 10 Aug 2016

  65. https://www.sofa-framework.org/community/forum/. Accessed 10 Aug 2016

  66. Kim, S.-Y., Kim, Y.-S., Yoo, Y.-H.: A unified energy-based haptic model for a non-rigid object. IEICE Electron. Express 6(7), 382–388 (2009)

    Article  Google Scholar 

  67. Kim, S.-Y., Kim, Y.-S., Yoo, Y.-H.: A unified haptic representation for fluid and deformable objects. IEICE Electron. Express 7(3), 170–176 (2010)

    Article  Google Scholar 

  68. Kim, Y.J., Otaduy, M.A., Lin, M.C., Manocha, D.: Six-degree-of-freedom haptic rendering using incremental and localized computations. Presence 12(3), 277–295 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingjun Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, P. New advances for haptic rendering: state of the art. Vis Comput 34, 271–287 (2018). https://doi.org/10.1007/s00371-016-1324-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1324-y

Keywords

Navigation