Skip to main content
Log in

Distance field guided \(L_1\)-median skeleton extraction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We introduce a distance field guided \(L_1\)-median method to extract topologically clean 1D curve skeleton from the point cloud model. We first voxelize the input point cloud, and compute the distance field for the point cloud. Then with the distance field, we extract the initial skeleton of the model using a multi-scale parameter controlled thinning method. Finally, we incorporate the initial skeleton into the \(L_1\)-median optimization, and develop a distance field guided \(L_1\)-median to effectively extract the complete skeleton from the point cloud. Our method exhibits the advantages of both the distance field based skeleton extraction methods and the \(L_1\)-median skeleton extraction methods. Our skeleton extraction system is robust and effective, and can be applied to the raw scanned point cloud data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 9(1), 3–15 (2003)

    Article  Google Scholar 

  2. Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. (TOG) 27(3), 44 (2008)

    Article  Google Scholar 

  3. Avron, H., Sharf, A., Greif, C., Cohen-Or, D.: \(\ell \)1-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. (TOG) 29(5), 135 (2010)

    Article  Google Scholar 

  4. Bitter, I., Kaufman, A.E., Sato, M.: Penalized-distance volumetric skeleton algorithm. IEEE Trans. Vis. Comput. Graph. 7(3), 195–206 (2001)

    Article  Google Scholar 

  5. Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In: Computer Vision-ECCV, Springer, pp. 603–618 (2000)

  6. Bucksch, A., Lindenbergh, R., Menenti, M.: Skeltre. Vis. Comput. 26(10), 1283–1300 (2010)

    Article  Google Scholar 

  7. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.: Point cloud skeletons via laplacian based contraction. In: Shape Modeling International Conference (SMI), pp. 187–197. IEEE (2010)

  8. Chuang, J.H., Ahuja, N., Lin, C.C., Tsai, C.H., Chen, C.H.: A potential-based generalized cylinder representation. Comput. Graph. 28(6), 907–918 (2004)

    Article  Google Scholar 

  9. Chuang, M., Kazhdan, M.: Fast mean-curvature flow via finite-elements tracking. In: Computer Graphics Forum, vol. 30, pp. 1750–1760. Wiley Online Library (2011)

  10. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007)

    Article  Google Scholar 

  11. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Symposium on Geometry Processing, pp. 143–152 (2006)

  12. Gagvani, N., Silver, D.: Parameter-controlled volume thinning. Graph. Models Image Process. 61(3), 149–164 (1999)

    Article  Google Scholar 

  13. Hassouna, M.S., Farag, A.A.: Robust centerline extraction framework using level sets. In: Computer Vision and Pattern Recognition, CVPR. IEEE Computer Society Conference on, vol. 1, pp. 458–465. IEEE (2005)

  14. Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D.: Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. (TOG) 28(5), 176 (2009)

    Article  Google Scholar 

  15. Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., Chen, B.: L1-medial skeleton of point cloud. ACM Trans. Graph. 32(4), 65 (2013)

    MATH  Google Scholar 

  16. Jalba, A.C., Sobiecki, A., Telea, A.C.: An unified multiscale framework for planar, surface, and curve skeletonization. IEEE Trans. Pattern Anal. Mach Intell 38(1), 30–45 (2016)

    Article  Google Scholar 

  17. Jiang, W., Xu, K., Cheng, Z.Q., Martin, R.R., Dang, G.: Curve skeleton extraction by coupled graph contraction and surface clustering. Graph. Models 75(3), 137–148 (2013)

    Article  Google Scholar 

  18. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts, vol. 22. ACM (2003)

  19. Kustra, J., Jalba, A., Telea, A.: Computing refined skeletal features from medial point clouds. Pattern Recognit. Lett. 76, 13–21 (2016)

    Article  Google Scholar 

  20. Li, G., Liu, L., Zheng, H., Mitra, N.J.: Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph. TOG 29(6), 152 (2010)

    Google Scholar 

  21. Li, X., Woon, T.W., Tan, T.S., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Proceedings of the 2001 symposium on Interactive 3D graphics, pp. 35–42. ACM (2001)

  22. Liao, B., Xiao, C., Jin, L., Fu, H.: Efficient feature-preserving local projection operator for geometry reconstruction. Comput. Aided Des. 45(5), 861–874 (2013)

    Article  Google Scholar 

  23. Lipman, Y., Cohen-Or, D., Levin, D., Tal-Ezer, H.: Parameterization-free projection for geometry reconstruction. ACM Trans. Graph. (TOG) 26(3), 22 (2007)

    Article  Google Scholar 

  24. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-Sana, J.: Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. (TOG) 29(6), 151 (2010)

    Article  Google Scholar 

  25. Malandain, G., Fernández-Vidal, S.: Euclidean skeletons. Image and vision computing 16(5), 317–327 (1998)

  26. Natali, M., Biasotti, S., Patanè, G., Falcidieno, B.: Graph-based representations of point clouds. Graph. Models 73(5), 151–164 (2011)

  27. Pang, Z., Zhao, Y., Xiao, C.: Effective skeletons extraction for animated surfaces based on geometry propagation. Comput. Anim. Virtual Worlds 26(3–4), 301–309 (2015)

    Article  Google Scholar 

  28. Preiner, R., Mattausch, O., Arikan, M., Pajarola, R., Wimmer, M.: Continuous projection for fast l1 reconstruction. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH) 33(4), 47:1–47:13 (2014)

  29. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L.: On-the-fly curve-skeleton computation for 3d shapes. Comput. Graph. Forum 26(3), 323–328 (2007)

    Article  Google Scholar 

  31. Siddiqi, K., Pizer, S.: Medial representations: mathematics, algorithms and applications, 1st edn. Springer Publishing Company Incorporated, New York (2008)

    Book  MATH  Google Scholar 

  32. Small, C.G.: A survey of multidimensional medians. International Statistical Review/Revue Internationale de Statistique pp. 263–277 (1990)

  33. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. Comput. Graph. Forum 31(5), 1735–1744 (2012)

    Article  Google Scholar 

  34. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. (TOG) 28(3), 71 (2009)

    Article  Google Scholar 

  35. Verroust, A., Lazarus, F.: Extracting skeletal curves from 3d scattered data. In: Shape Modeling and Applications, 1999. Proceedings. Shape Modeling International ’99, pp. 194–201 (1999). doi:10.1109/SMA.1999.749340

  36. Zheng, Q., Hao, Z., Huang, H., Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Skeleton-intrinsic symmetrization of shapes. In: Computer Graphics Forum, Wiley Online Library, vol. 34, pp. 275–286 (2015)

  37. Zhou, Y., Toga, A.: Efficient skeletonization of volumetric objects. IEEE Trans. Vis. Comput. Graph. 5(3), 196–209 (1999). doi:10.1109/2945.795212

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by NSFC (No.61472288, No. 61672390, No. 41201404, No. U1536204), NCET (NCET-13-0441) and the Key Grant Project of State Key Lab of Software Engineering (SKLSE-2015-A-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 5038 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Pang, Z., Jing, X. et al. Distance field guided \(L_1\)-median skeleton extraction. Vis Comput 34, 243–255 (2018). https://doi.org/10.1007/s00371-016-1331-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1331-z

Keywords

Navigation