Skip to main content
Log in

Style-based biped walking control

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a control approach for synthesizing physics-based walking motions that mimic the style of a given reference walking motion. Style transfer between the reference motion and its physically simulated counterpart is achieved via extracted high-level features like the trajectory of the swing ankle and the twist of the swing leg during stepping. The physically simulated motion is also capable of tracking the intra-step variations of the sagittal character center of mass velocity of the reference walking motion. This is achieved by an adaptive velocity control strategy which is fed by a gain–deviation relation curve learned offline. This curve is learned from a number of training walking motions once and is used for velocity control of other reference walking motions. The control approach is tested with motion capture data of several walking motions of different styles. The approach also enables generating various styles manually or by varying the high-level features of an existing motion capture data. The demonstrations show that the proposed control framework is capable of synthesizing robust motions which mimic the desired style regardless of the changing environment or character proportions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abe, Y., Popović, J.: Simulating 2D gaits with a phase-indexed tracking controller. IEEE Comput. Graph. Appl. 31(4), 22–33 (2011). doi:10.1109/MCG.2011.62

    Article  Google Scholar 

  2. Backman, R., Kallmann, M.: Designing controllers for physics-based characters with motion networks. Comput. Animat. Virtual Worlds 24(6), 553–563 (2013)

    Article  Google Scholar 

  3. Barliya, A., Omlor, L., Giese, M.A., Berthoz, A., Flash, T.: Expression of emotion in the kinematics of locomotion. Exp. Brain Res. 225(2), 159–176 (2013). doi:10.1007/s00221-012-3357-4

    Article  Google Scholar 

  4. Carensac, S., Pronost, N., Bouakaz, S.: Real-time gait control for partially immersed bipeds. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, MIG ’15, pp. 177–182. ACM, New York (2015). doi:10.1145/2822013.2822016

  5. Coros, S., Beaudoin, P., van de Panne, M.: Robust task-based control policies for physics-based characters. ACM Trans. Graph. 28(5), 1 (2009). doi:10.1145/1618452.1618516

    Article  Google Scholar 

  6. Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Trans. Graph. 29(4), 1 (2010). doi:10.1145/1778765.1781156

    Article  Google Scholar 

  7. Coros, S., Beaudoin, P., Yin, K.K., van de Pann, M.: Synthesis of constrained walking skills. ACM Trans. Graph. 27(5), 1 (2008). doi:10.1145/1409060.1409066

    Article  Google Scholar 

  8. Coumans, E.: Bullet physics engine. http://bulletphysics.org (2005)

  9. Da Silva, M., Abe, Y., Popović, J.: Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27(3), 1 (2008). doi:10.1145/1360612.1360681

    Article  Google Scholar 

  10. Da Silva, M., Abe, Y., Popović, J.: Simulation of human motion data using short-horizon model-predictive control. Comput. Graph. Forum 27(2), 371–380 (2008). doi:10.1111/j.1467-8659.2008.01134.x

    Article  Google Scholar 

  11. de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. 29(4), 1 (2010). doi:10.1145/1778765.1781157

    Article  Google Scholar 

  12. Firmin, M., van de Panne, M.: Controller design for multi-skilled bipedal characters. Comput. Graph. Forum 34(8), 50–63 (2015). doi:10.1111/cgf.12607

    Article  Google Scholar 

  13. Geijtenbeek, T., Pronost, N., Stappen, A.F.V.D.: Simple data-driven control for simulated bipeds. In: SCA ’12: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 211–219 (2012). doi:10.2312/SCA/SCA12/211-219

  14. Hansen, N.: The cma evolution strategy: a comparing review. In: Lozano, J., Larraaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation, Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Berlin (2006)

    Chapter  Google Scholar 

  15. Igel, C., Heidrich-Meisner, V., Glasmachers, T.: Shark. J. Mach. Learn. Res. 9, 993–996 (2008)

    MATH  Google Scholar 

  16. Jain, S., Liu, C.K.: Modal-space control for articulated characters. ACM Trans. Graph. 30(5), 1–12 (2011). doi:10.1145/2019627.2019637

    Article  Google Scholar 

  17. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/. Accessed 01 Jan 2016

  18. Kang, G.E., Gross, M.M.: The effect of emotion on movement smoothness during gait in healthy young adults. J. Biomech. doi:10.1016/j.jbiomech.2016.10.044

  19. Laszlo, J., van de Panne, M., Fiume, E.: Limit cycle control and its application to the animation of balancing and walking. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’96, pp. 155–162. ACM Press, New York, (1996). doi:10.1145/237170.237231

  20. Laszlo, J., van de Panne, M., Fiume, E.: Interactive control for physically-based animation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’00, pp. 201–208. ACM Press, New York (2000). doi:10.1145/344779.344876

  21. Lee, Y., Kim, S., Lee, J.: Data-driven biped control. ACM Trans. Graph. 29(4), 1 (2010). doi:10.1145/1778765.1781155

    Google Scholar 

  22. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levine, S., Popović, J.: Physically plausible simulation for character animation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 221–230 (2012). doi:10.2312/SCA/SCA12/221-230

  24. Liu, L., Yin, K., Guo, B.: Improving sampling-based motion control. Comput. Graph. Forum 34(2), 415–423 (2015). doi:10.1111/cgf.12571

    Article  Google Scholar 

  25. Liu, L., Yin, K., van de Panne, M., Shao, T., Xu, W.: Sampling-based contact-rich motion control. ACM Trans. Graph. 29(4), 1 (2010). doi:10.1145/1778765.1778865

    Article  Google Scholar 

  26. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

  27. MIDAS: Human motion database. http://www.motion.hacettepe.edu.tr (2015)

  28. Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 1 (2009). doi:10.1145/1531326.1531387

    Article  Google Scholar 

  29. Oberg, T., Karsznia, A., Oberg, K.: Basic gait parameters: reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 30(2), 210–223 (1993). doi:10.1080/19397030902947041

    Google Scholar 

  30. Paróczai, R., Bejek, Z., Illyés, A.: Gait parameters of healthy, elderly people. Phys. Educ. Sport 4(1), 49–58 (2006)

    Google Scholar 

  31. Pratt, J., Dilworth, P., Pratt, G.: Virtual model control of a bipedal walking robot. In: Proceedings of the IEEE International Conference on Robotics and Automation 1997, vol. 1, pp. 193–198 (1997). doi:10.1109/ROBOT.1997.620037

  32. Sharon, D., Van De Panne, M.: Synthesis of controllers for stylized planar bipedal walking. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2005, pp. 2387–2392 (2005). doi:10.1109/ROBOT.2005.1570470

  33. Sok, K., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Trans. Graph. 26(3), 107 (2007). doi:10.1145/1276377.1276511

    Article  Google Scholar 

  34. Sunada, C., Argaez, D., Dubowsky, S., Mavroidis, C.: A coordinated Jacobian transpose control for mobile multi-limbed robotic systems. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 1910–1915 (1994). doi:10.1109/ROBOT.1994.351182

  35. Tanawongsuwan, R., Bobick, A.: Performance analysis of time-distance gait parameters under different speeds. In: 4th International Conference on Audio- and Video-based Biometric Person Authentication (AVBPA 2003), pp. 715–724 (2003). doi:10.1007/3-540-44887-X_83

  36. Tsai, Y.Y., Lin, W.C., Cheng, K.B., Lee, J., Lee, T.Y.: Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Trans. Vis. Comput. Graph. 16(2), 325–337 (2010). doi:10.1109/TVCG.2009.76

    Article  Google Scholar 

  37. Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers. ACM Trans. Graph. 28(5), 1 (2009). doi:10.1145/1618452.1618514

    Google Scholar 

  38. Ye, Y., Liu, C.K.: Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29(4), 1 (2010). doi:10.1145/1778765.1778811

    Article  MathSciNet  Google Scholar 

  39. Yin, K., Loken, K., van de Panne, M.: Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26(3), 105 (2007). doi:10.1145/1239451.1239556

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific and Technological Research Council of Turkey (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, Project No. 112E105). The authors would like to thank anonymous reviewers for their helpful comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zumra Kavafoglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 109190 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavafoglu, Z., Kavafoglu, E., Cimen, G. et al. Style-based biped walking control. Vis Comput 34, 359–375 (2018). https://doi.org/10.1007/s00371-016-1338-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1338-5

Keywords

Navigation