Skip to main content
Log in

Physics-inspired approach to realistic and stable water spray with narrowband air particles

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose an efficient and physics-inspired method for producing water spray effects by modeling air particles within a narrowband of the water surface in particle-based water simulation. In the real world, water and air continuously interact with each other around free surfaces, and this phenomenon is commonly observed in waterfalls or in rough sea waves. Due to the small volume of water spray, the interfaces between water and air become vague, and the interactions between water and air lead to strong vortex phenomena. To express these phenomena, we propose the generation of narrowband air cells in particle-based water simulations and the expression of water spray effects by creating and evolving air particles in narrowband air cells. We guarantee the robustness of the simulation by solving the drifting problem that occurs when the number of adjacent air particles is insufficient. Experiments convincingly demonstrate that the proposed approach is efficient and easy to use while delivering high-quality results. We produce efficient water spray effects from coarse simulation as an independent post-process that can be applied to most particle-based fluid solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Angelidis, A., Neyret, F.: Simulation of smoke based on vortex filament primitives. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 87–96 (2005)

  2. Angelidis, A., Neyret, F., Singh, K., Nowrouzezahrai, D.: A controllable, fast and stable basis for vortex based smoke simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32 (2006)

  3. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

  4. Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. In: ACM SIGGRAPH (2007)

  5. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191(2), 448–475 (2003)

    Article  MATH  Google Scholar 

  6. Dobashi, Y., Matsuda, Y., Yamamoto, T., Nishita, T.: A fast simulation method using overlapping grids for interactions between smoke and rigid objects. Comput. Graph. Forum 27(2), 477–486 (2008)

    Article  Google Scholar 

  7. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: ACM SIGGRAPH, pp. 15–22 (2001)

  8. He, S., Wong, H.C., Pang, W.M., Wong, U.H.: Real-time smokesimulation with improved turbulence by spatial adaptive vorticityconfinement. Comput. Anim. Virtual Worlds 22(2–3), 107–114 (2011)

    Article  Google Scholar 

  9. He, X., Wang, H., Zhang, F., Wang, H., Wang, G., Zhou, K.: Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Trans. Graph. 34(1), 7 (2014)

    Article  Google Scholar 

  10. Hong, J.M., Shinar, T., Fedkiw, R.: Wrinkled flames and cellular patterns. In: ACM SIGGRAPH (2007)

  11. Ihmsen, M., Akinci, N., Akinci, G., Teschner, M.: Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28(6–8), 669–677 (2012)

    Article  Google Scholar 

  12. Jang, T., Blanco i Ribera, R., Bae, J., Noh, J.: Simulating SPH fluid with multi-level vorticity. Int. J. Virtual Real. 10(1), 21 (2011)

    Google Scholar 

  13. Kim, D., Lee, S.W., young Song, O., Ko, H.S.: Baroclinic turbulence with varying density and temperature. IEEE Trans. Vis. Comput. Graph. 18(9), 1488–1495 (2012)

    Article  Google Scholar 

  14. Kim, D., Song, O.Y., Ko, H.S.: Stretching and wiggling liquids. In: ACM SIGGRAPH Asia, pp. 120:1–120:7 (2009)

  15. Kim, T., Thürey, N., James, D., Gross, M.: Wavelet turbulence for fluid simulation. In: ACM SIGGRAPH, pp. 50:1–50:6 (2008)

  16. Klingner, B.M., Feldman, B.E., Chentanez, N., O’Brien, J.F.: Fluid animation with dynamic meshes. In: ACM SIGGRAPH, pp. 820–825 (2006)

  17. Lee, H.Y., Hong, J.M., Kim, C.H.: Simulation of swirling bubbly water using bubble particles. Vis. Comput. 25(5–7), 707–712 (2009)

    Article  Google Scholar 

  18. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH, pp. 457–462 (2004)

  19. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013)

    Article  MATH  Google Scholar 

  20. Mercier, O., Beauchemin, C., Thuerey, N., Kim, T., Nowrouzezahrai, D.: Surface turbulence for particle-based liquid simulations. ACM Trans. Graph. 34(6), 10 (2015)

    Article  Google Scholar 

  21. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., Hussaini, M.Y.: Physics based boiling simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’06, pp. 317–324 (2006)

  22. Morris, J.P.: Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 33(3), 333–353 (2000)

    Article  MATH  Google Scholar 

  23. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005)

  24. NextLimit: RealFlow. http://www.realflow.com/ (2015)

  25. Nielsen, M.B., Osterby, O.: A two-continua approach to Eulerian simulation of water spray. ACM Trans. Graph. 32(4), 67:1–67:10 (2013)

    Article  MATH  Google Scholar 

  26. Ott, F., Schnetter, E.: A modified SPH approach for fluids with large density differences. arXiv preprint arXiv:physics/0303112 (2003)

  27. Park, S.I., Kim, M.J.: Vortex fluid for gaseous phenomena. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 261–270 (2005)

  28. Pfaff, T., Thuerey, N., Cohen, J., Tariq, S., Gross, M.: Scalable fluid simulation using anisotropic turbulence particles. In: ACM SIGGRAPH Asia, pp. 174:1–174:8 (2010)

  29. Pfaff, T., Thuerey, N., Gross, M.: Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31(4), 112:1–112:8 (2012)

    Article  Google Scholar 

  30. Pfaff, T., Thuerey, N., Selle, A., Gross, M.: Synthetic turbulence using artificial boundary layers. In: ACM SIGGRAPH Asia, pp. 121:1–121:10 (2009)

  31. Prakash, M., Cleary, P.W., Pyo, S.H., Woolard, F.: A new approach to boiling simulation using a discrete particle based method. Comput. Graph. 53, 118–126 (2015)

    Article  Google Scholar 

  32. Ren, B., Li, C., Yan, X., Lin, M.C., Bonet, J., Hu, S.M.: Multiple-fluid sph simulation using a mixture model. ACM Trans. Graph. 33(5), 171:1–171:11 (2014)

    Article  MATH  Google Scholar 

  33. RFX: Naiad. http://rfx.com/products/14/ (2012)

  34. Schechter, H., Bridson, R.: Evolving sub-grid turbulence for smoke animation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–7 (2008)

  35. Schechter, H., Bridson, R.: Ghost SPH for animating water. ACM Trans. Graph. 31(4), 61 (2012)

    Article  Google Scholar 

  36. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: ACM SIGGRAPH, pp. 910–914 (2005)

  37. SideFX: Houdini. https://www.sidefx.com/products/houdini-fx/ (2015)

  38. Solenthaler, B., Pajarola, R.: Density contrast SPH interfaces. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 211–218 (2008)

  39. Stam, J.: Stable fluids. In: ACM SIGGRAPH, pp. 121–128 (1999)

  40. Tartakovsky, A.M., Meakin, P.: A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. J. Comput. Phys. 207(2), 610–624 (2005)

    Article  MATH  Google Scholar 

  41. Vines, M., Houston, B., Lang, J., Lee, W.S.: Vortical inviscid flows with two-way solid–fluid coupling. IEEE Trans. Vis. Comput. Graph. 20(2), 303–315 (2014)

    Article  Google Scholar 

  42. Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase sph simulation for interactive fluids and solids. ACM Trans. Graph. 35(4), 79 (2016)

    Google Scholar 

  43. Yang, B., Jin, X.: Turbulence synthesis for shape-controllable smoke animation. Comput. Anim. Virtual Worlds 25(3–4), 465–472 (2014)

    Article  Google Scholar 

  44. Yang, T., Chang, J., Ren, B., Lin, M.C., Zhang, J.J., Hu, S.M.: Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graph. 34(6), 201:1–201:11 (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Hallym University Research Fund (HRF-201609-008), Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (IITP-2016-R7518-16-1028), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2011602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 137587 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Kim, W. & Lee, J. Physics-inspired approach to realistic and stable water spray with narrowband air particles. Vis Comput 34, 461–471 (2018). https://doi.org/10.1007/s00371-017-1353-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1353-1

Keywords

Navigation