Skip to main content

Advertisement

Log in

Robust and accurate computation of geometric distance for Lipschitz continuous implicit curves

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Computing the geometric distance between a point and an implicitly defined curve is widely used in implicit curve fitting and geometric processing. Iterative numerical methods are often used to compute the distance, which may give quite accurate solutions but are usually time-consuming and non-robust. In this paper, a circle double-and-bisect algorithm is proposed to reliably evaluate the accurate geometric distance of a point to an implicit curve. The method’s prerequisite is merely the Lipschitz continuity of the implicit function. Moreover, by using gradient norm’s upper bound estimation and minor arcs evolution, the efficiency can be improved apparently. Experimental results show that the evaluated distance can describe the fitting result with more fidelity and that some fitting algorithms (for example, the genetic algorithm) re-implemented with the proposed geometric distance converge much faster. Due to these contributions, the proposed method can be applied in diverse applications such as error evaluation, curve fitting and random point cloud generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahn, S.J., Rauh, W., Warnecke, H.-J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recogn. 34(12), 2283–2303 (2001)

    Article  MATH  Google Scholar 

  2. Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  3. Aigner, M., Jüttler, B.: Robust computation of foot points on implicitly defined curves. In: Dæhlen, M., Mørken, K., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces: Tromsø 2004, pp. 1–10. Nashboro Press, Brentwood (2005)

    Google Scholar 

  4. Bajaj, C.L., Bernardini, F., Xu, G.: Reconstructing surfaces and functions on surfaces from unorganized three-dimensional data. Algorithmica 1997(19), 243–261 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bo, P., Ling, R., Wang, W.: A revisit to fitting parametric surfaces to point clouds. Comput. Graph. 36(5), 534–540 (2012)

    Article  Google Scholar 

  6. Cheng, K.-S.D., Wang, W., Qin, H., Wong, K.-Y.K., Yang, H., Liu, Y.: Design and analysis of optimization methods for subdivision surface fitting. IEEE Trans. Vis. Comput. Graph. 13(5), 878–890 (2007)

    Article  Google Scholar 

  7. De La Fraga, L.G., Silva, I.V., Cruz-Cortes, N.: Euclidean distance fit of ellipses with a genetic algorithm. In: Proceedings of Applications of Evolutionary Computing—EvoWorkshops 2007, pp. 359–366 (2007)

  8. Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, Ann Arbor, pp. 1–10 (2001)

  9. Gotardo, P., Bellon, O., Boyer, K., Silva, L.: Range image segmentation into planar and quadric surfaces using an improved robust estimator and genetic algorithm. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(6), 2303–2316 (2004)

    Article  Google Scholar 

  10. Hartmann, E.: On the curvature of curves and surfaces defined by normal forms. Comput. Aided Geom. Des. 16(5), 355–376 (1999)

    Article  MATH  Google Scholar 

  11. Hu, M., Feng, J., Zheng, J.: An additional branch free algebraic B-spline curve fitting method. Vis. Comput. 26(6), 801–811 (2010)

    Article  Google Scholar 

  12. Hunyadi, L., Vajk, I.: Fitting a model to noisy data using low-order implicit curves and surfaces. In: Proceedings of 2nd Eastern European Regional Conference on the Engineering of Computer Based Systems, pp. 106–114 (2011)

  13. Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17, 135–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jüttler, B., Chalmovianský, P., Shalaby, M., Wurm, E.: Approximate algebraic methods for curves and surfaces and their applications. In: Proceedings of the 21st Spring Conference on Computer Graphics, pp. 13–18 (2005)

  15. Kanatani, K., Sugaya, Y.: Unified computation of strict maximum likelihood for geometric fitting. J. Math. Imaging Vis. 38(1), 1–13 (2010)

    Article  MathSciNet  Google Scholar 

  16. Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55, 2197–2208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Feng, J., Jin, X.: Algebraic B-spline curve reconstruction based on signed distance field. J. Softw. 18(9), 2306–2317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mullen, P., De Goes, F., Desbrun, M., Cohen-Steiner, D., Alliez, P.: Signing the unsigned: robust surface reconstruction from raw pointsets. Comput. Graph. Forum 29(5), 1733–1741 (2010)

    Article  Google Scholar 

  19. Nishita, T., Sederberg, T.W., Kakimoto, M.: Ray tracing trimmed rational surface patches. Comput. Graph. (SIGGRAPH’90) 24(4), 337–345 (1990)

    Article  Google Scholar 

  20. Redding, N.J.: Implicit polynomials, orthogonal distance regression, and the closest point on a curve. IEEE Trans. Pattern Anal. Mach. Intell. 22(2), 191–199 (2000)

  21. Rouhani, M., Sappa, A.D.: Implicit polynomial representation through a fast fitting error estimation. IEEE Trans. Image Process. 21(4), 2089–2098 (2012)

    Article  MathSciNet  Google Scholar 

  22. Sampson, P.D.: Fitting conic sections to very scattered data: an iterative refinement of the Bookstein algorithm. Comput. Graph. Image Process. 18(1), 97–108 (1982)

    Article  Google Scholar 

  23. Sappa, A.D., Rouhani, M.: Efficient distance estimation for fitting implicit quadric surfaces. In: Proceedings of International Conference on Image Processing (ICIP), pp. 3521–3524 (2009)

  24. Schulz, T., Jüttler, B.: Envelope computation in the plane by approximate implicitization. Appl. Algebra Eng. Commun. Comput. 22(4), 265–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sherbrooke, E.C., Patrikalakis, N.M.: Computation of the solutions of nonlinear polynomial systems. Comput. Aided Geom. Des. 10(5), 379–405 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Song, X., Jüttler, B.: Modeling and 3D object reconstruction by implicitly defined surfaces with sharp features. Comput. Graph. 33(3), 321–330 (2009)

    Article  Google Scholar 

  27. Song, X., Jüttler, B., Poteaux, A.: Hierarchical spline approximation of the signed distance function. In: SMI’10 Proceedings of the 2010 Shape Modeling International Conference, pp. 241–245 (2010)

  28. Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)

    Article  Google Scholar 

  29. Upreti, K., Song, T., Tambat, A., Subbarayan, G.: Algebraic distance estimations for enriched isogeometric analysis. Comput. Methods Appl. Mech. Eng. 280, 28–56 (2014)

    Article  Google Scholar 

  30. Upreti, K., Subbarayan, G.: Signed algebraic level sets on NURBS surfaces and implicit Boolean signed algebraic level sets on NURBS surfaces and implicit Boolean. Comput. Aided Des. 82, 112–126 (2017)

    Article  MathSciNet  Google Scholar 

  31. Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Graph. 25(2), 214–238 (2006)

    Article  Google Scholar 

  32. Zagorchev, L.G., Goshtasby, A.A.: A curvature-adaptive implicit surface reconstruction for irregularly spaced points. IEEE Trans. Vis. Comput. Graph. 18(9), 1460–1473 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14F020032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxiao Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Zhou, Y. & Li, X. Robust and accurate computation of geometric distance for Lipschitz continuous implicit curves. Vis Comput 33, 937–947 (2017). https://doi.org/10.1007/s00371-017-1370-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1370-0

Keywords

Navigation