Abstract
In this paper, we propose a novel adaptive rendering method to robustly handle noise artifacts and outliers of Monte Carlo ray tracing by combining the Nadaraya–Watson and robust local linear estimators while efficiently preserving fine details. Our method first constructs a sparse robust local linear estimator in feature space (normal,texture,etc.), while also removing spike noise. Then, we utilize the Nadaraya–Watson estimator to filter the outlier-free image. We generate the final image by interpolating the values of each estimator at each pixel with weights that are inversely proportional to the estimated mean squared errors. Lastly, we distribute additional samples to the regions with higher estimated mean squared errors if sampling budget remains. We have demonstrated that our estimator outperforms previous methods visually and numerically.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bitterli, B., Rousselle, F., Moon, B., Guitián, J.A.I., Adler, D., Mitchell, K., Jarosz, W., Novák, J.: Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. Comput. Gr. Forum 35(4), 107–117 (2016)
Chang, J.H.R., Wang, Y.C.F.: Propagated image filtering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10–18 (2015)
Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)
DeCoro, C., Weyrich, T., Rusinkiewicz, S.: Density-based outlier rejection in Monte Carlo rendering. Comput. Gr. Forum 29(7), 2119–2125 (2010)
Delbracio, M., Musé, P., Buades, A., Chauvier, J., Phelps, N., Morel, J.M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Gr. 33(1), 8:1–8:15 (2014)
Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’86, pp. 143–150. ACM, New York (1986)
Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Gr. 34(4), 122:1–122:12 (2015)
Li, T.M., Wu, Y.T., Chuang, Y.Y.: SURE-based optimization for adaptive sampling and reconstruction. ACM Trans. Gr. 31(6), 194:1–194:9 (2012)
Liu, Y., Zheng, C., Zheng, Q., Yuan, H.: Removing Monte Carlo noise using a Sobel operator and a guided image filter. Vis. Comput. (2017). URL http://dx.doi.org/10.1007/s00371-017-1363-z
Moon, B., Carr, N., Yoon, S.E.: Adaptive rendering based on weighted local regression. ACM Trans. Gr. 33(5), 170:1–170:14 (2014)
Moon, B., Iglesias-Guitian, J.A., Yoon, S.E., Mitchell, K.: Adaptive rendering with linear predictions. ACM Trans. Gr. 34(4), 121:1–121:11 (2015)
Moon, B., McDonagh, S., Mitchell, K., Gross, M.: Adaptive polynomial rendering. ACM Trans. Gr. 35(4), 40:1–40:10 (2016)
Nadaraya, E.A.: On estimating regression. Theor. Probab. Appl. 9(1), 141–142 (1964)
Pharr, M., Wenzel, J., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2016)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive rendering with non-local means filtering. ACM Trans. Gr. 31(6), 195:1–195:11 (2012)
Rousselle, F., Manzi, M., Zwicker, M.: Robust denoising using feature and color information. Comput. Gr. Forum 32(7), 121–130 (2013)
Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. Trans. Img. Proc. 13(4), 600–612 (2004)
Watson, G.S.: Smooth regression analysis. Sankhy Indian J. Stat. Ser. A (1961–2002) 26(4), 359–372 (1964)
Yuan, H., Zheng, C.: Adaptive rendering based on robust principal component analysis. Vis. Comput. (2017). URL http://dx.doi.org/10.1007/s00371-017-1360-2
Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., Yoon, S.E.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Gr. Forum (Proc. Eurogr.) 34(2), 667–681 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, H., Zheng, C. Adaptive rendering based on a weighted mixed-order estimator. Vis Comput 33, 695–704 (2017). https://doi.org/10.1007/s00371-017-1381-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1381-x