Skip to main content
Log in

Adaptive rendering based on a weighted mixed-order estimator

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel adaptive rendering method to robustly handle noise artifacts and outliers of Monte Carlo ray tracing by combining the Nadaraya–Watson and robust local linear estimators while efficiently preserving fine details. Our method first constructs a sparse robust local linear estimator in feature space (normal,texture,etc.), while also removing spike noise. Then, we utilize the Nadaraya–Watson estimator to filter the outlier-free image. We generate the final image by interpolating the values of each estimator at each pixel with weights that are inversely proportional to the estimated mean squared errors. Lastly, we distribute additional samples to the regions with higher estimated mean squared errors if sampling budget remains. We have demonstrated that our estimator outperforms previous methods visually and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bitterli, B., Rousselle, F., Moon, B., Guitián, J.A.I., Adler, D., Mitchell, K., Jarosz, W., Novák, J.: Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. Comput. Gr. Forum 35(4), 107–117 (2016)

    Article  Google Scholar 

  2. Chang, J.H.R., Wang, Y.C.F.: Propagated image filtering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10–18 (2015)

  3. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. DeCoro, C., Weyrich, T., Rusinkiewicz, S.: Density-based outlier rejection in Monte Carlo rendering. Comput. Gr. Forum 29(7), 2119–2125 (2010)

    Article  Google Scholar 

  5. Delbracio, M., Musé, P., Buades, A., Chauvier, J., Phelps, N., Morel, J.M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Gr. 33(1), 8:1–8:15 (2014)

    Article  MATH  Google Scholar 

  6. Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’86, pp. 143–150. ACM, New York (1986)

  7. Kalantari, N.K., Bako, S., Sen, P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Gr. 34(4), 122:1–122:12 (2015)

    Article  Google Scholar 

  8. Li, T.M., Wu, Y.T., Chuang, Y.Y.: SURE-based optimization for adaptive sampling and reconstruction. ACM Trans. Gr. 31(6), 194:1–194:9 (2012)

    Google Scholar 

  9. Liu, Y., Zheng, C., Zheng, Q., Yuan, H.: Removing Monte Carlo noise using a Sobel operator and a guided image filter. Vis. Comput. (2017). URL http://dx.doi.org/10.1007/s00371-017-1363-z

  10. Moon, B., Carr, N., Yoon, S.E.: Adaptive rendering based on weighted local regression. ACM Trans. Gr. 33(5), 170:1–170:14 (2014)

    Article  Google Scholar 

  11. Moon, B., Iglesias-Guitian, J.A., Yoon, S.E., Mitchell, K.: Adaptive rendering with linear predictions. ACM Trans. Gr. 34(4), 121:1–121:11 (2015)

    Article  Google Scholar 

  12. Moon, B., McDonagh, S., Mitchell, K., Gross, M.: Adaptive polynomial rendering. ACM Trans. Gr. 35(4), 40:1–40:10 (2016)

    Article  Google Scholar 

  13. Nadaraya, E.A.: On estimating regression. Theor. Probab. Appl. 9(1), 141–142 (1964)

    Article  MATH  Google Scholar 

  14. Pharr, M., Wenzel, J., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2016)

    Google Scholar 

  15. Rousselle, F., Knaus, C., Zwicker, M.: Adaptive rendering with non-local means filtering. ACM Trans. Gr. 31(6), 195:1–195:11 (2012)

    Article  Google Scholar 

  16. Rousselle, F., Manzi, M., Zwicker, M.: Robust denoising using feature and color information. Comput. Gr. Forum 32(7), 121–130 (2013)

    Article  Google Scholar 

  17. Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. Trans. Img. Proc. 13(4), 600–612 (2004)

    Article  Google Scholar 

  19. Watson, G.S.: Smooth regression analysis. Sankhy Indian J. Stat. Ser. A (1961–2002) 26(4), 359–372 (1964)

    MathSciNet  MATH  Google Scholar 

  20. Yuan, H., Zheng, C.: Adaptive rendering based on robust principal component analysis. Vis. Comput. (2017). URL http://dx.doi.org/10.1007/s00371-017-1360-2

  21. Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., Yoon, S.E.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Gr. Forum (Proc. Eurogr.) 34(2), 667–681 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Zheng, C. Adaptive rendering based on a weighted mixed-order estimator. Vis Comput 33, 695–704 (2017). https://doi.org/10.1007/s00371-017-1381-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1381-x

Keywords

Navigation