Abstract
Dense triangular mesh is required to represent fine wrinkle details, which leads to heavy cost of storage and network transmission payload for cloth animation. This paper describes a simple and efficient compression method based on the nearly inextensible property of cloth, whose main degrees of freedom are the dihedral angles. Given a single frame as the reference, we build a local cylindrical coordinate system and encode the vertex as three channels: dihedral angle, change of radius and height w.r.t. the reference. The values of latter two channels are close to zero due to the inextensibility of cloth, which helps for a high compression ratio. Compared with previous approaches, our method can achieve a higher compression ratio with lower computational cost.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahn, J.K., Koh, Y.J., Kim, C.S.: Efficient fine-granular scalable coding of 3D mesh sequences. IEEE Trans. Multimedia 15(3), 485–497 (2013)
Alexa, M., Mller, W.: Representing animations by principal components. Comput. Graph. Forum 19(3), 411–418 (2000)
Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. Comput. Graph. Forum 20(3), 480–489 (2001)
Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM (1998)
Bici, M.O., Akar, G.B.: Improved prediction methods for scalable predictive animated mesh compression. J. Vis. Commun. Image Represent. 22(7), 577–589 (2011)
English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. ACM Trans. Graph. (TOG) 27(3), 1–5 (2008)
Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Trans. Graph. (TOG) 26(3), 49 (2007)
Huang, J., Zhang, H., Shi, X., Liu, X., Bao, H.: Interactive mesh deformation with pseudo material effects. Comput. Animat. Virtual Worlds 17(3–4), 383–392 (2006)
Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3d animations of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 126–135. Eurographics Association (2003)
James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. (TOG) 24(3), 399–407 (2005)
Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’00, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)
Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Comput. Graph. 28(1), 25–34 (2004)
Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’00, pp. 165–172. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)
Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. (TOG) 32(6), 214:1–214:7 (2013)
Mamou, K., Zaharia, T., Prêteux, F., Stefanoski, N., Ostermann, J.: Frame-based compression of animated meshes in MPEG-4. In: 2008 IEEE International Conference on Multimedia and Expo, pp. 1121–1124. IEEE (2008)
Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)
Narain, R., Samii, A., O’Brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (TOG) 31(6), 152 (2012)
Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Vis. Comput. Graph. 5(1), 47–61 (1999)
Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217. ACM (2005)
Shikhare, D., Bhakar, S., Mudur, S.P.: Compression of large 3d engineering models using automatic discovery of repeating geometric features. In: Proceedings of the Vision Modeling and Visualization Conference 2001 (VMV-01), Stuttgart, Germany, November 21–23, 2001, pp. 233–240 (2001)
Stefanoski, N., Liu, X., Klie, P., Ostermann, J.: Scalable linear predictive coding of time-consistent 3D mesh sequences. In: 3DTV Conference, 2007, pp. 1–4. IEEE (2007)
Stefanoski, N., Ostermann, J.: Connectivity-guided predictive compression of dynamic 3d meshes. In: 2006 IEEE International Conference on Image Processing, pp. 2973–2976. IEEE (2006)
Stefanoski, N., Ostermann, J.: SPC: fast and efficient scalable predictive coding of animated meshes. In: Computer Graphics Forum, vol. 29, pp. 101–116. Wiley Online Library (2010)
Thomaszewski, B., Pabst, S., Straer, W.: Continuum-based strain limiting. Comput. Graph. Forum 28(2), 569–576 (2009)
Thomaszewski, B., Wacker, M., Stra\(\beta \)er, W., Lyard, E., Luible, C., Volino, P., Kasap, M., Muggeo, V., Magnenat-Thalmann, N.: Advanced topics in virtual garment simulation. In: Myszkowski, K., Havran, V. (eds.) Eurographics 2007—Tutorials. The Eurographics Association (2007)
Touma, C., Gotsman, C.: Triangle mesh compression. In: Proceedings of the Graphics Interface 1998 Conference, June 18–20, 1998, Vancouver, BC, Canada, pp. 26–34 (1998)
Wang, H.: A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. (TOG) 34(6), 246:1–246:9 (2015)
Wang, H., Hecht, F., Ramamoorthi, R., O’Brien, J.F.: Example-based wrinkle synthesis for clothing animation. ACM Trans. Graph. (TOG) 29(4), 107:1–107:8 (2010)
Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. (TOG) 30(4), 71 (2011)
Xu, W., Umentani, N., Chao, Q., Mao, J., Jin, X., Tong, X.: Sensitivity-optimized rigging for example-based real-time clothing synthesis. ACM Trans. Graph. (TOG) 33(4), 107:1–107:11 (2014)
Acknowledgements
We would like to thank the anonymous reviewers for their valuable comments and suggestions. This work is partially supported by NSFC (Nos. 61522209, 61210007). Prof. Ying Song is supported by NSFC (No. 61602416) and Prof. Hanqiu Sun is supported by RGC research grant (Ref. 416212), UGC grant (No. 4055060), NSFC funds (Nos. 61379087, 61602183).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, J., Zheng, Y., Song, Y. et al. Cloth compression using local cylindrical coordinates. Vis Comput 33, 801–810 (2017). https://doi.org/10.1007/s00371-017-1389-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1389-2