Skip to main content
Log in

A novel unconditionally stable explicit integration method for finite element method

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Physics-based deformation simulation demands much time in integration process for solving motion equations. To ameliorate, in this paper we resort to structural mechanics and mathematical analysis to develop a novel unconditionally stable explicit integration method for both linear and nonlinear FEM. First we advocate an explicit integration formula with three adjustable parameters. Then we analyze the spectral radius of both linear and nonlinear dynamic transfer function’s amplification matrix to obtain limitations for these three parameters to meet unconditional stability conditions. Finally, we theoretically analyze the accuracy property of the proposed method so as to optimize the computational errors. The experimental results indicate that our method is unconditionally stable for both linear and nonlinear systems and its accuracy property is superior to both common and recent explicit and implicit methods. In addition, the proposed method can efficiently solve the problem of huge computation cost in integration procedure for FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics-based animation. Point Based Graph. 30(6), 340–387 (2005)

    Google Scholar 

  2. Taylor, Z.A., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans. Med. Imaging 27(5), 650–663 (2008)

    Article  Google Scholar 

  3. Dick, C., Georgii, J., Westermann, R.: A real-time multigrid finite hexahedra method for elasticity simulation using cuda. Simul. Model. Pract. Theory 19(2), 801–816 (2011)

    Article  Google Scholar 

  4. Yang, C., Li, S., Lan, Y., Wang, L., Hao, A., Qin, H.: Coupling time-varying modal analysis and fem for real-time cutting simulation of objects with multi-material sub-domains. Comput. Aided Geom. Des. 43, 53–67 (2016)

    Article  MathSciNet  Google Scholar 

  5. Barbic, J.: Real-time subspace integration for St. Venant–Kirchhoff deformable models. Acm Trans. Graph. 24(3), 982–990 (2005)

    Article  Google Scholar 

  6. Gui, Y., Wang, J.T., Jin, F., Chen, C., Zhou, M.X.: Development of a family of explicit algorithms for structural dynamics with unconditional stability. Nonlinear Dyn. 77(4), 1157–1170 (2014)

    Article  MathSciNet  Google Scholar 

  7. Hirota, G., Fisher, S., State, A.: An improved finite-element contact model for anatomical simulations. Vis. Comput. 19(5), 291–309 (2003)

    Article  Google Scholar 

  8. Choi, M.G., Ko, H.S.: Modal warping. Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graph. 11(1), 91–101 (2005)

    Article  Google Scholar 

  9. Yang, Y., Xu, W., Guo, X., Zhou, K., Guo, B.: Boundary-aware multidomain subspace deformation. IEEE Trans. Vis. Comput. Graph. 19(10), 1633–1645 (2013)

    Article  Google Scholar 

  10. Krysl, P., Lall, S., Marsden, J.E.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Methods Eng. 51(4), 479–504 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbic, J.: Real-time reduced large-deformation models and distributed contact for computer graphics and haptics, Ph.D. thesis. Carnegie Mellon University, Pittsburgh (2007), AAI3279452

  12. Yang, Y., Li D., Xu, W., Tian, Y., Zheng, C.: Expediting precomputation for reduced deformable simulation. ACM Trans. Graph. 34(6), 243:1–243:13 (2015)

  13. Hauth, M., Etzmuss, O., Strasser, W.: Analysis of numerical methods for the simulation of deformable models. Vis. Comput. 19(7), 581–600 (2003)

    Article  Google Scholar 

  14. Hussein, B., Dan, N., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54(4), 283–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(1), 67–94 (1959)

    Google Scholar 

  16. Belytschko, T.: An overview of semidiscretization and time integration procedures. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, pp. 1–66. North-Holland Publ., North-Holland, Amsterdam (1983)

  17. Wilson, E.L.: A computer program for the dynamic stress analysis of underground structures, SEL. In: Technical Report 68-1, University of California, Berkeley (1968)

  18. Bathe, K., Wilson E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall, Englewood Cilffs, New Jersey (1976)

  19. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23(2), 121–134 (2007). (Gui2014Development)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kang, Y.M., Choi, J.H., Cho, H.G., Lee, D.H.: An efficient animation of wrinkled cloth with approximate implicit integration. Vis. Comput. 17(3), 147–157 (2001)

    Article  MATH  Google Scholar 

  21. Oh, S., Ahn, J., Wohn, K.: Low damped cloth simulation. Vis. Comput. 22(2), 70–79 (2006)

    Article  Google Scholar 

  22. Chang, S.Y.: Explicit pseudodynamic algorithm with unconditional stability. Am. Soc. Civ. Eng. 128(9), 935–947 (2002)

    Google Scholar 

  23. Chang, S.Y.: An explicit method with improved stability property. Int. J. Numer. Methods Eng. 77(8), 1100–1120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chang, S.Y., Yang, Y.S., Chi, W.: A family of explicit algorithms for general pseudodynamic testing. Earthq. Eng. Eng. Vib. 10(1), 51–64 (2011)

    Article  Google Scholar 

  25. Ding, Z., Li, L., Hu, Y., Li, X., Deng, W.: State-space based time integration method for structural systems involving multiple nonviscous damping models. Comput. Struct. 171, 31–45 (2016)

    Article  Google Scholar 

  26. Chang, S.Y.: Improved explicit method for structural dynamics. J. Eng. Mech. 133(7), 748–760 (2007)

    Article  Google Scholar 

  27. Chen, C., Ricles, J.M.: Development of direct integration algorithms for structural dynamics using discrete control theory. J. Eng. Mech. 134(8), 676–683 (2008)

    Article  Google Scholar 

  28. Bouaziz, S., Martin, S., Liu, T., Kavan, T., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33(4), 154:1–154:11 (2014)

    Article  Google Scholar 

  29. Wang, H.: A Chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans. Graph. 34(6), 246:1–246:9 (2015)

    Google Scholar 

  30. Wang, H., Yang, Y.: Descent methods for elastic body simulation on the GPU. ACM Trans. Graph. 35(6), 212:1–212:10 (2016)

    Google Scholar 

  31. Liu, T., Bouaziz, S., Kavan, L.: Towards real-time simulation of hyperelastic materials. arXiv:1604.07378

  32. Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and animation. Acm Siggraph Computer Graphics. 23(3), 207–214 (1989)

    Article  Google Scholar 

  33. Wriggers P.: Computational contact mechanics. Wiley (2002)

  34. Hughes, T.R.J.: The finite element method. In: Linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cilffs, New Jersey (2000)

  35. Rezaiee-Pajand, M., Sarafrazi, S.R., Hashemian, M.: Improving stability domains of the implicit higher order accuracy method. Int. J. Numer. Methods Eng. 88(9), 880–896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bathe, K.J., Wilson, E.L.: Stability and accuracy analysis of direct integration methods. Earthq. Eng. Struct. Dyn. 1(3), 283–291 (1972)

    Article  Google Scholar 

  37. Tamma, K.K., Zhou, X., Sha, D.: A theory of development and design of generalized integration operators for computational structural dynamics. Int. J. Numer. Methods Eng. 50(7), 1619–1664 (2001)

    Article  MATH  Google Scholar 

  38. Tamma, K.K., Sha, D., Zhou, X.: Time discretized operators. part 1: towards the theoretical design of a new generation of a generalized family of unconditionally stable implicit and explicit representations of arbitrary order for computational dynamics. Comput. Methods Appl. Mech. Eng. 192(3), 291–329 (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Program of Wuhan, China, under Grant No. 2016010101010022; National Natural Science Foundation of China under Grant No. 61373107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 26823 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Yuan, Z., Tong, Q. et al. A novel unconditionally stable explicit integration method for finite element method. Vis Comput 34, 721–733 (2018). https://doi.org/10.1007/s00371-017-1410-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1410-9

Keywords

Navigation