Skip to main content
Log in

Automatic skinning and weight retargeting of articulated characters using extended position-based dynamics

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Animating an articulated character requires the explicit specification of interior skeleton structure and its attachment to skin surface. This task of “rigging” typically involves the manual weight painting and deformation fine-tuning with popular conventional animation methods. Weight painting is unavoidably a time-consuming and laborious process that would need sophisticated skills from animators during animation production. In this paper, using the extended position-based dynamics (PBD), we have articulated a strategy to generate the realistic skin deformation and reuse the painted weights on a new character. For each frame, the skin is deformed by the linear blend skinning method (LBS) at first. To solve the problem of candy-wrapper effect and surface overlapping in LBS, we improve the traditional PBD method by adding energy constraints and employ several geometrically and physically-based constraints to refine the deformed skin automatically. To further reduce the animator’s workload from tedious rigging process, we propose the weight retargeting approach using surface matching and interpolation based on the powerful bi-harmonic distance. It could transfer the weights of an existing model to a new character with similar topology. Through numerous experiments, we could demonstrate the visual performance of our new techniques on a variety of articulated characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hiebert, B., Dave, J., Kim, TY., et al.: The Chronicles of Narnia: the lion, the crowds and rhythm and hues author video presentations are available from the citation page. In: ACM SIGGRAPH 2006 Courses, ACM, New York (2006)

  2. Smith, J., White, J.: BlockParty: modular rigging encoded in a geometric volume. Acm Trans. Gr. 25, 115 (2006)

    Google Scholar 

  3. Pan, J., Yang, X., Xie, X., et al.: Automatic rigging for animation characters with 3D silhouette. Comput. Anim. Virtual Worlds 20(2–3), 121–131 (2009)

    Article  Google Scholar 

  4. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. Acm Trans. Gr. 26(3), 72 (2007)

    Article  Google Scholar 

  5. Jacobson, A., Baran, I., Popović, J., et al.: Bounded biharmonic weights for real-time deformation. Acm Trans. Gr. 30(4), 76–79 (2011)

    Article  Google Scholar 

  6. Dionne, O., Lasa, MD.: Geodesic voxel binding for production character meshes. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation ACM, New York, 173–180 (2013)

  7. Magnenat-Thalmann, N., Laperrière, R., et al.: Joint-dependent local deformations for hand animation and object grasping. Proc. Gr. Interface 26–33, (1988)

  8. Forstmann, S., Ohya, J.: Fast skeletal animation by skinned arc-spline based deformation. In: Fellner, D., Hansen, C. (eds.) Proceedings in EG Short Papers, The Eurographics Association. doi:10.2312/egs.20061014 (2006)

  9. Mukai, T., Kuriyama, S.: Efficient dynamic skinning with low-rank helper bone controllers. Acm Trans. Gr. 35(4), (2016)

  10. Kavan, L., Collins, S., Zra, J., et al.: Geometric skinning with approximate dual quaternion blending. Acm Trans. Gr. 27(4), 995–999 (2008)

    Article  Google Scholar 

  11. Kim, Y.B., Han, J.H.: Bulging-free dual quaternion skinning. Comput. anim. virtual worlds 25(3–4), 321–329 (2014)

    Article  Google Scholar 

  12. Vaillant, R., Barthe, L., Guennebaud, G., et al.: Implicit skinning: real-time skin deformation with contact modeling. Acm Trans. Gr. 32(4), 96–96 (2013)

    Article  MATH  Google Scholar 

  13. Vaillant, R., Guennebaud, G., Barthe, L., et al.: Robust iso-surface tracking for interactive character skinning[J]. Acm Trans. Gr. 33(6), 189 (2014)

    Article  Google Scholar 

  14. Müller, M., Chentanez, N.: Adding physics to animated characters with oriented particles, the workshop on virtual reality interactions and physical simulations. Vriphys 2011, Lyon, France, DBLP 83-91, (2011)

  15. James, D.L., Twigg, C.D.: Skinning mesh animations. Acm Trans. Gr. 24(3), 399–407 (2005)

    Article  Google Scholar 

  16. Park, S.I., Hodgins, J.K.: Data-driven modeling of skin and muscle deformation. Acm Trans. Gr. 27(3), 15–19 (2008)

    Article  Google Scholar 

  17. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. Conf. Comput. Gr. Interact. Tech. 165–172, (2000)

  18. Xu, H., Barbič, J.: Pose-space subspace dynamics. Acm Trans. Gr. 35(4), 1–14 (2016)

    Article  Google Scholar 

  19. Mohr, A., Gleicher, M.: Building efficient, accurate character skins from examples. Acm Trans. Gr. 21(3), 562–568 (2003)

    Article  Google Scholar 

  20. Merry, B., Marais, P., Gain, J.: Animation space: a truly linear framework for character animation. Acm Trans. Gr. 25(4), 1400–1423 (2006)

    Article  Google Scholar 

  21. Seo, J., Seol, Y., Wi, D., et al.: Rigging transfer. Comput. Anim. Virtual Worlds 21(3–4), 375–386 (2010)

    Google Scholar 

  22. Ju, T., Zhou, Q.Y., Panne, M., et al.: Reusable skinning templates using cage-based deformations. Acm Trans. Gr. 27(5), 32–39 (2008)

    Article  Google Scholar 

  23. Le, B.H., Hodgins, J.K.: Real-time skeletal skinning with optimized centers of rotation. Acm Trans. Gr. 35(4), 1–10 (2016)

    Article  Google Scholar 

  24. Allen, B., Curless, B., Popović, J., et al.: The space of human body shapes: reconstruction and parameterization from range scans[J]. Acm Trans. Gr. 22(3), 587–594 (2003)

    Article  Google Scholar 

  25. Ali-Hamadi, D., Liu, T., Gilles, B., et al.: Anatomy transfer. Acm Trans. Gr. 32(6), 188 (2013)

    Article  Google Scholar 

  26. Avril, Q., Ribet, S., Ghafourzadeh, D. et al.:Animation setup transfer for 3D characters. Comput. Gr. Forum 115–126, (2016)

  27. Müller, M., Heidelberger, B., Hennix, M., et al.: Position based dynamics. J. Vis. Commun. Image Representation 18(2), 109–118 (2007)

    Article  Google Scholar 

  28. Bender, J., Müller, M., Otaduy, M.A., et al.: A survey on position-based simulation methods in computer graphics. Comput. Gr. Forum 33(6), 228–251 (2014)

    Article  Google Scholar 

  29. Pan, J., Bai, J., Zhao, X., et al.: Real-time haptic manipulation and cutting of hybrid soft tissue models by extended position-based dynamics. Comput. Anim. Virtual Worlds 26(3–4), 321–335 (2015)

    Article  Google Scholar 

  30. Macklin, M., Ller, M., Chentanez, N., et al.: Unified particle physics for real-time applications. Acm Trans. Gr. 33(4), 1–12 (2014)

    Article  Google Scholar 

  31. Rumman, N.A., Fratarcangeli, M.: Position-based skinning for soft articulated characters. Comput. Gr. forum 34(6), 240–250 (2015)

    Article  Google Scholar 

  32. PhysX-Nvidia. http://physxinfo.com/wiki/

  33. Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic distance. Acm Trans. Gr. 29(3), 483–496 (2010)

    Article  Google Scholar 

  34. Yen, L., Fouss, F., Decaestecker, C., et al.: Graph nodes clustering based on the commute-time kernel, in proceedings of the 11th Pacific-Asia conference on knowledge discovery and data mining (PAKDD 2007). Lect. notes in Comput. Sci. 4426, 1037–1045 (2007)

    Article  Google Scholar 

  35. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. ACM Natl. Conf. 23, 517–524 (1968)

    Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (No. 61402025, 61672149, 61532002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Chen, L., Yang, Y. et al. Automatic skinning and weight retargeting of articulated characters using extended position-based dynamics. Vis Comput 34, 1285–1297 (2018). https://doi.org/10.1007/s00371-017-1413-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1413-6

Keywords

Navigation