Skip to main content
Log in

A new two-stage mesh surface segmentation method

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Partitioning a mesh surface into several semantic components is a fundamental task in geometry processing. This paper presents a new stable and effective segmentation method, which contains two stages. The first stage is a spectral clustering procedure, while the second stage is a variational refining procedure. For spectral clustering, we construct a new Laplacian matrix which reflects more semantic information than classical Laplacian matrices. By this new Laplacian, we introduce a simple and fast spectral clustering method, which gives quite satisfying segmentation results for most surfaces and provides a good initialization for the second stage. In the second stage, we propose a variational refining procedure by a new discretization of the classical non-convex Mumford–Shah model. The variational problem is solved by efficient iterative algorithms based on alternating minimization and alternating direction method of multipliers (ADMM). The first stage provides a good initialization for the second stage, while the second stage refines the result of the first stage well. Experiments demonstrated that our method is very stable and effective compared to existing approaches. It outperforms competitive segmentation methods when evaluated on the Princeton Segmentation Benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Agathos, A., Pratikakis, I., Perantonis, S., Azariadis, P.: 3d mesh segmentation methodologies for cad applications. Comput. Aided Design Appl. 4(6), 827–841 (2007)

    Article  Google Scholar 

  2. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on primitives. Vis. Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  3. Au, O., Zheng, Y., Chen, M., Xu, P., Tai, C.: Mesh segmentation with concavity aware fields. IEEE Trans. Vis. Comput. Graph. 18(7), 1125–1134 (2012)

    Article  Google Scholar 

  4. Benhabiles, H., Vandeborre, J., Lavoue, G., Daoudi, M.: A comparative study of existing metrics for 3D-mesh segmentation evaluation. Vis. Comput. 26(12), 1451–1466 (2010)

    Article  Google Scholar 

  5. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trend® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  6. Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. CVPR 2, 60–65 (2005)

    MATH  Google Scholar 

  7. Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28(3) (2009)

    Article  Google Scholar 

  10. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)

    Article  Google Scholar 

  11. Delaunoy, A., Fundana, K., Prados, E., Heyden, A.: Convex multi-region segmentation on manifolds. In :IEEE 12th International Conference on Computer Vision, pp. 662–669. IEEE, (2009)

  12. Garland, M., Willmott, A., Heckbert, P.: Hierarchical face clustering on polygonal surfaces. In Proceeding of ACM Symposium on Interactive 3D graphics, pp. 49–58. (2001)

  13. Gelfand, N., Guibas, L.: Shape segmentation using local slippage analysis. In: Proceeding of SGP, pp. 214–223. (2004)

  14. Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3D mesh analysis. ACM Trans. Graph. 27(5) (2008)

    Article  Google Scholar 

  15. Guo, K., Zou, D., Chen, X.: 3d mesh labeling via deep convolutional neural networks. ACM Trans. Graph. 35(1), 1–12 (2015)

    Article  Google Scholar 

  16. Hoffman, D., Richards, W.: Parts of recognition. Cognition 18(1–3), 65–96 (1984)

    Article  Google Scholar 

  17. Kaick, O., Fish, N., Kleiman, Y., Asafi, S., Cohen-Or, D.: Shape segmentation by approximate convexity analysis. ACM Trans. Graph. 34(1) (2014)

    Article  Google Scholar 

  18. Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: CVPR, pp. 1–11. (2017)

  19. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(3) (2010)

    Article  Google Scholar 

  20. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8–10), 649–658 (2005)

    Article  Google Scholar 

  21. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)

    Article  Google Scholar 

  22. Lai, R., Chan, T.: A framework for intrinsic image processing on surfaces. Comput. Vis. Image Underst. 115(12), 1647–1661 (2011)

    Article  Google Scholar 

  23. Lai, Y., Hu, S., Martin, R., Rosin, P.: Fast mesh segmentation using random walks. In: Proceedings of SPM, pp. 183–191. (2008)

  24. Lavoue, G., Dupont, F., Baskurt, A.: A new cad mesh segmentation method, based on curvature tensor anaylsis. Comput. Aided Design 37(10), 975–987 (2005)

    Article  Google Scholar 

  25. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnoerr, C.: Convex multi-class image labeling by simplex-constrained total variation. Lect. Note Comput. Sci. 5567, 150–162 (2009)

    Article  Google Scholar 

  26. Lellmann, J., Schnoerr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4(4), 1049–1096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lie, J., Lysaker, M., Tai, X.-C.: A binary level set model and some applications for Mumford–Shah image segmentation. IEEE Trans. Image Proc. 15(5), 1171–1181 (2006)

    Article  MATH  Google Scholar 

  28. Liu, R., Zhang, H.: Segmentation of 3d meshes through spectral clustering. In: Proceedings of the Pacific Conference on Computer Graphics and Applications, pp. 298–305. (2004)

  29. Liu, Z., Tang, S., Bu, S., Zhang, H.: New evaluation metrics for mesh segmentation. Comput. Graph. 36(6), 553–564 (2013)

    Article  Google Scholar 

  30. Lloyd, S.: Least square quantization in pcm. IEEE Trans. Inf. Theor. 28, 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  32. Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)

    Article  Google Scholar 

  33. Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical simplex of \(r^n\). J. Optim. Theor. Appl. 50(1), 195–200 (1986)

  34. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pur. Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ng, M., Weiss, P., Yuan, X.: Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods. SIAM J. Sci. Comput. 32(5), 2710–2736 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)

    Article  MATH  Google Scholar 

  37. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  38. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  39. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  40. Wang, P., Fu, X., Liu, Y., Liu, S., Guo, B.: Rolling guidance normal filter for geometric processing. ACM Trans. Graph. 34(6), 173 (2015)

    Google Scholar 

  41. Wu, C., Tai, X.: Augmented Lagrangian method, dual methods, and split Bregman iteration for rof, vectorial tv, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, C., Tai, X.: A level set formulation of geodesic curvature flow on simplicial surfaces. IEEE Trans. Vis. Comput. Graph. 16(4), 647–662 (2010)

    Article  Google Scholar 

  43. Wu, C., Zhang, J., Duan, Y., Tai, X.: Augmented lagrangian method for total variation based image restoration and segmentation over triangulated surfaces. J. Sci. Comput. 50(1), 145–166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, J., Kobbelt, L.: Structure recovery via hybrid variational surface approximation. Comput. Graph. Forum. 24(3), 277–284 (2005)

  45. Xin, S., He, Y., Fu, C.: Efficiently computing exact geodesic loops within finite steps. IEEE Trans. Vis. Comput. Graph. 18(6), 879–889 (2012)

    Article  Google Scholar 

  46. Yan, D., Wang, W., Liu, Y., Yang, Z.: Variational mesh segmentation via quadric surface fitting. Comput. Aided Design 44(11), 1072–1082 (2012)

    Article  Google Scholar 

  47. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for tvl1–l2 signal reconstruction from partial fourier data. IEEE J. Select. Topic Signal Process. 4(2), 288–297 (2010)

    Article  Google Scholar 

  48. Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing. Comput. Graph. Forum. 29(6), 1865–1894 (2010)

    Article  Google Scholar 

  49. Zhang, H., Wu, C., Zhang, J., Deng, J.: Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Vis. Comput. Graph. 21(7), 873–886 (2015)

    Article  Google Scholar 

  50. Zhang, J., Zheng, J., Cai, J.: Interactive mesh cutting using constrained random walks. IEEE Trans. Vis. Comput. Graph. 17(3), 357–367 (2011)

    Article  Google Scholar 

  51. Zhang, J., Zheng, J., Wu, C., Cai, J.: Variational mesh decomposition. ACM Trans. Graph. 31(3), 21 (2012)

    Article  Google Scholar 

  52. Zhang, W., Deng, B., Zhang, J., Bouaziz, S., Liu, L.: Guided mesh normal filtering. Comput. Graph. Forum 34(7), 23–34 (2015)

    Article  Google Scholar 

  53. Zheng, Y., Tai, C., Wu, O.K.-C.: Dot scissor: A single-click interface for mesh segmentation. IEEE Trans. Vis. Comput. Graph. 18(8), 1304–1312 (2012)

    Article  Google Scholar 

  54. Ziemer, W.: Weakly Differentiable Functions, vol. 120. Springer, New York (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Pengfei Xu, Noa Fish, Evangelos Kalogerakis for providing their segmentation data of [3, 17] and [18, 19], and the Princeton Segmentation Benchmark [9]. This work was supported by the \(\mathrm {NSF}\) of China (Nos. 11626169, 11301289, 11371341, 61602341 and 11531013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, C., Deng, J. et al. A new two-stage mesh surface segmentation method. Vis Comput 34, 1597–1615 (2018). https://doi.org/10.1007/s00371-017-1434-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1434-1

Keywords

Navigation