Skip to main content
Log in

Estimation of differential quantities using Hermite RBF interpolation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Curvature is an important geometric property in computer graphics that provides information about the character of object surfaces. The exact curvature can only be calculated for a limited set of surface descriptions. Most of the time, we deal with triangles, point sets or some other discrete representation of the surface. For those, curvature can only be estimated. However, surfaces can be fitted by some kind of interpolation function and from it, curvature can be calculated directly. This paper proposes a method for curvature estimation and normal vector re-estimation based on surface fitting using Hermite Radial Basis Function interpolation. Hermite variation uses not only control points, but normal vectors at those points as well. This leads to a better and more robust interpolation than if only control points are used. Once the interpolant is obtained, the curvature and other possible properties can be directly computed using known approaches. The proposed algorithm was tested on several explicit and implicit functions, and it outperforms current state-of-the-art methods if exact normals are available. For normals calculated directly from a triangle mesh, the proposed algorithm works on par with existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38(1), 91–109 (2001). doi:10.1006/jagm.2000.1127. http://www.sciencedirect.com/science/article/pii/S0196677400911271

    Article  MathSciNet  Google Scholar 

  2. Batagelo, H.C., Wu, S.T.: Estimating curvatures and their derivatives on meshes of arbitrary topology from sampling directions. Vis. Comput. 23(9), 803–812 (2007). doi:10.1007/s00371-007-0133-8

    Article  Google Scholar 

  3. Bridson, R.: Fast poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH 2007 Sketches, SIGGRAPH ’07. ACM, New York, NY, USA (2007). doi:10.1145/1278780.1278807

  4. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 67–76. ACM, New York, NY, USA (2001). doi:10.1145/383259.383266

  5. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Comput. Aided Geom. Des. 22(2), 121–146 (2005). doi:10.1016/j.cagd.2004.09.004. http://www.sciencedirect.com/science/article/pii/S016783960400113X

    Article  MathSciNet  Google Scholar 

  6. Cohen-Steiner, D., Morvan, J.M.: Restricted delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG ’03, pp. 312–321. ACM, New York, NY, USA (2003). doi:10.1145/777792.777839

  7. Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans. Graph. 23(1), 45–63 (2004). doi:10.1145/966131.966134

    Article  Google Scholar 

  8. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632 – 658 (2005). doi:10.1016/j.cagd.2005.06.005. http://www.sciencedirect.com/science/article/pii/S0167839605000737. Geometric Modelling and Differential Geometry

    Article  MathSciNet  Google Scholar 

  9. Gray, A.: Surfaces in 3-dimensional space via mathematica. In: Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd edn., chap. 17, pp. 394–401. CRC Press, Inc., Taylor & Francis group. Boca Raton, FL, USA (1997)

  10. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  11. Hildebrandt, K., Polthier, K.: Generalized shape operators on polyhedral surfaces. Comput. Aided Geom. Des. 28(5), 321–343 (2011). doi:10.1016/j.cagd.2011.05.001. http://www.sciencedirect.com/science/article/pii/S0167839611000628

    Article  MathSciNet  Google Scholar 

  12. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Graph. 21(3), 339–346 (2002). doi:10.1145/566654.566586

    Article  Google Scholar 

  13. Kalogerakis, E., Simari, P., Nowrouzezahrai, D., Singh, K.: Robust statistical estimation of curvature on discretized surfaces. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pp. 13–22. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007). http://dl.acm.org/citation.cfm?id=1281991.1281993

  14. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87, pp. 163–169. ACM, New York, NY, USA (1987). doi:10.1145/37401.37422

  15. Macedo, I., Gois, J., Velho, L.: Hermite interpolation of implicit surfaces with radial basis functions. In: Computer Graphics and Image Processing (SIBGRAPI), 2009 XXII Brazilian Symposium on, pp. 1–8 (2009). doi:10.1109/SIBGRAPI.2009.11

  16. Macedo, I., Gois, J.P., Velho, L.: Hermite radial basis functions implicits. Comput. Graph. Forum 30(1), 27–42 (2011). doi:10.1111/j.1467-8659.2010.01785.x

    Article  Google Scholar 

  17. Max, N.: Weights for computing vertex normals from facet normals. J. Graph. Tools 4(2), 1–6 (1999). doi:10.1080/10867651.1999.10487501

    Article  Google Scholar 

  18. Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, Mathematics and Visualization, pp. 35–57. Springer, Berlin (2003). doi:10.1007/978-3-662-05105-4_2

    Chapter  Google Scholar 

  19. Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput.Aided Geom. Des. 26(1), 37–60 (2009). doi:10.1016/j.cagd.2008.01.002. http://www.sciencedirect.com/science/article/pii/S0167839608000095

    Article  MathSciNet  Google Scholar 

  20. Pouget, M., Cazals, F.: Estimation of local differential properties of point-sampled surfaces. In: CGAL User and Reference Manual, 4.8 edn. CGAL Editorial Board (2016). http://doc.cgal.org/4.8/Manual/packages.html#PkgJet_fitting_3Summary

  21. Razdan, A., Bae, M.: Curvature estimation scheme for triangle meshes using biquadratic bzier patches. Comput. Aided Des. 37(14), 1481–1491 (2005). doi:10.1016/j.cad.2005.03.003. http://www.sciencedirect.com/science/article/pii/S0010448505000825

    Article  Google Scholar 

  22. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, 3DPVT ’04, pp. 486–493. IEEE Computer Society, Washington, DC, USA (2004). doi:10.1109/3DPVT.2004.54

  23. The stanford 3D scanning repository. Electronic. http://graphics.stanford.edu/data/3Dscanrep/

  24. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of the Fifth International Conference on Computer Vision, 1995, pp. 902–907 (1995). doi:10.1109/ICCV.1995.466840

  25. Theisel, H., Rossi, C., Zayer, R., Seidel, H.P.: Normal based estimation of the curvature tensor for triangular meshes. In: Proceedings of 12th Pacific Conference on Computer Graphics and Applications, 2004, PG 2004, pp. 288–297 (2004). doi:10.1109/PCCGA.2004.1348359

  26. Vaillant, R.: Recipe for implicit surface reconstruction with hrbf. Electronic (2013). http://rodolphe-vaillant.fr/?e=12

  27. Váša, L., Vaněček, P., Prantl, M., Skorkovská, V., Martínek, P., Kolingerová, I.: Mesh statistics for robust curvature estimation. Comput. Graph. Forum (2016). doi:10.1111/cgf.12982

    Article  Google Scholar 

  28. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995). doi:10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, P., Qian, X.: Direct computing of surface curvatures for point-set surfaces. In: Botsch, M., Pajarola, R., Chen, B., Zwicker M. (eds.) Eurographics Symposium on Point-Based Graphics. The Eurographics Association (2007). doi:10.2312/SPBG/SPBG07/029-036

  30. Zhihong, M., Guo, C., Yanzhao, M., Lee, K.: Curvature estimation for meshes based on vertex normal triangles. Comput. Aided Des. 43(12), 1561–1566 (2011). doi:10.1016/j.cad.2011.06.006. http://www.sciencedirect.com/science/article/pii/S0010448511001448

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UWB grant SGS-2016-013 Advanced Graphical and Computing Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prantl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prantl, M., Váša, L. Estimation of differential quantities using Hermite RBF interpolation. Vis Comput 34, 1645–1659 (2018). https://doi.org/10.1007/s00371-017-1438-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1438-x

Keywords

Navigation