Skip to main content
Log in

3D object recognition using scale-invariant features

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

As 3D scanning technology develops, it becomes easier to acquire various 3D surface data; thus, there is a growing need for 3D data registration and recognition technology. Many existing studies use local descriptors using local surface patches, and most of them use a fixed support radius, so they cannot cope perfectly when the model and scene have different scales. In this study, we propose a perfectly scale-invariant feature selection algorithm by extending the 2D SIFT algorithm (Lowe in Int J Comput Vis 60(2):91–110, 2004) to a 3D mesh. The feature selection method proposed in this study can obtain highly repeatable feature points and support radii regardless of mesh scale. The selected features can effectively describe the local information by the new shape descriptor proposed in this study. Unlike existing shape descriptors, it is possible to perform scale-invariant 3D object recognition and achieve a high recognition rate when combined with the feature point selection algorithm proposed in this study by using the gradients of the scalar functions defined on the 3D surface. We also reduced the searching space and lowered the false positive rate by suggesting a new RANSAC-based transformation hypotheses generation algorithm. Our 3D object recognition algorithm achieves recognition rates of 100 and 98.5%, respectively, when tested on the U3OR and CFVD datasets, exceeding the results of previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bariya, P., Novatnack, J., Schwartz, G., Nishino, K.: 3d geometric scale variability in range images: features and descriptors. Int. J. Comput. Vis. 99(2), 232–255 (2012)

    Article  MathSciNet  Google Scholar 

  2. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)

  3. Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 185–192. ACM (2004)

  4. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3d mesh saliency with statistical descriptors. In: Computer Graphics Forum, vol. 27, pp. 643–652. Wiley Online Library (2008)

  5. Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. Pattern Recogn. Lett. 28(10), 1252–1262 (2007)

    Article  Google Scholar 

  6. Darom, T., Keller, Y.: Scale-invariant features for 3-d mesh models. IEEE Trans. Image Process. 21(5), 2758–2769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. Comput. Vis. ECCV 2004, 224–237 (2004)

    MATH  Google Scholar 

  8. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. (TOG) 25(1), 130–150 (2006)

    Article  Google Scholar 

  9. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive performance evaluation of 3d local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2016)

    Article  MathSciNet  Google Scholar 

  10. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3d local surface description and object recognition. Int. J. Comput. Vis. 105(1), 63–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Y., Sohel, F., Bennamoun, M., Wan, J., Lu, M.: A novel local surface feature for 3d object recognition under clutter and occlusion. Inf. Sci. 293, 196–213 (2015)

    Article  Google Scholar 

  12. Guo, Y., Sohel, F.A., Bennamoun, M., Lu, M., Wan, J.: Trisi: a distinctive local surface descriptor for 3d modeling and object recognition. In: GRAPP/IVAPP, pp. 86–93 (2013)

  13. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)

  14. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  15. Kokkinos, I., Bronstein, M.M., Litman, R., Bronstein, A.M.: Intrinsic shape context descriptors for deformable shapes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 159–166. IEEE (2012)

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  17. Matei, B., Shan, Y., Sawhney, H.S., Tan, Y., Kumar, R., Huber, D., Hebert, M.: Rapid object indexing using locality sensitive hashing and joint 3d-signature space estimation. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1111–1126 (2006)

    Article  Google Scholar 

  18. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2), 348–361 (2010)

    Article  Google Scholar 

  19. Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1584–1601 (2006)

    Article  Google Scholar 

  20. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  21. Mokhtarian, F., Khalili, N., Yuen, P.: Multi-scale free-form 3d object recognition using 3d models. Image Vis. Comput. 19(5), 271–281 (2001)

    Article  Google Scholar 

  22. Novatnack, J., Nishino, K.: Scale-dependent/invariant local 3d shape descriptors for fully automatic registration of multiple sets of range images. Comput. Vis. ECCV 2008, 440–453 (2008)

    Google Scholar 

  23. Papazov, C., Burschka, D.: An efficient ransac for 3d object recognition in noisy and occluded scenes. Comput. Vis. ACCV 2010, 135–148 (2011)

    Google Scholar 

  24. Papazov, C., Haddadin, S., Parusel, S., Krieger, K., Burschka, D.: Rigid 3d geometry matching for grasping of known objects in cluttered scenes. Int. J. Robot. Res. 31(4), 538–553 (2012)

    Article  Google Scholar 

  25. Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3d object recognition in cluttered scenes. Int. J. Comput. Vis. 102(1–3), 129–145 (2013)

    Article  MathSciNet  Google Scholar 

  27. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: IEEE International Conference on Robotics and Automation, ICRA’09, pp. 3212–3217. IEEE (2009)

  28. Salti, S., Tombari, F., Di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  29. Shah, S.A.A., Bennamoun, M., Boussaid, F.: A novel feature representation for automatic 3d object recognition in cluttered scenes. Neurocomputing 205, 1–15 (2016)

    Article  Google Scholar 

  30. Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the harris operator for interest point detection on 3d meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  31. Taati, B., Greenspan, M.: Local shape descriptor selection for object recognition in range data. Comput. Vis. Image Underst. 115(5), 681–694 (2011)

    Article  Google Scholar 

  32. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: European Conference on Computer Vision, pp. 356–369. Springer (2010)

  33. Yamany, S.M., Farag, A.A.: Surface signatures: an orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1105–1120 (2002)

    Article  Google Scholar 

  34. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 373–380. IEEE (2009)

  35. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696. IEEE (2009)

Download references

Acknowledgements

The Institute of Engineering Research at Seoul National University provided research facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunwoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Lee, K. 3D object recognition using scale-invariant features. Vis Comput 35, 71–84 (2019). https://doi.org/10.1007/s00371-017-1453-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1453-y

Keywords

Navigation